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Abstract. This paper proposes scalable admission and congestion control schemes that allow each base station to decide independently of
the others what set of voice users to serve and/or what bit rates to offer to elastic traffic users competing for bandwidth. These algorithms
are primarily meant for large CDMA networks with a random but homogeneous user distribution. They take into account in an exact way
the influence of geometry on the combination of inter-cell and intra-cell interferences as well as the existence of maximal power constraints
of the base stations and users. We also study the load allowed by these schemes when the size of the network tends to infinity and the mean
bit rate offered to elastic traffic users. By load, we mean here the number of voice users that each base station can serve.
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1. Introduction

This paper is concerned by the evaluation of the global up-
and downlink maximal load of CDMA networks. More pre-
cisely we analyze the maximal number of users that such a
network can serve at a given bit-rate and/or the maximal bit-
rates that such a network can provide to a given user popula-
tion when taking into account

• the limitations of load due to inter-cell and own-cell inter-
ferences;

• maximal-power constraints.

This maximal load is evaluated and is used in order to de-
fine

• Admission control policies in the case of predefined user
bit-rates (e.g., voice); i.e., schemes allowing one to decide
whether a new user can be admitted or should be rejected
as its admission could make the global power allocation
problem unfeasible;

• Congestion control policies in the case of users with elas-
tic bit-rates (e.g., data); i.e., schemes allowing one to de-
termine the maximal fair user bit-rates that preserve the
feasibility of the power control problem at any time, in
function of the user population in all cells at this time.

The evaluation part relies on planar point processes and
stochastic geometry. The model has several key components,
the spatial location pattern of base stations (BS’s), the spa-
tial location pattern of users, the attenuation (path-loss) func-
tion and the policy of assignment of users to BS’s, which are
geometry-dependent, in addition to the non-geometric com-
ponents such as orthogonality factors, pilot powers and exter-
nal noise. We consider two specific models of BS locations:

the hexagonal and the Poisson models, for which we show
maximal load estimations.

We allow both patterns of locations to be countably infinite
so as to address the scalability questions, and to check the
ability of the proposed algorithms to continue to function well
as the size of the network goes to infinity.

The basic assignment policy will be that where each mo-
bile is served by the closest BS. It is basically equivalent to
the optimal-SIR-choice scheme and to the honeycomb model
in the classical hexagonal case.

This paper builds upon and complements a previous study
in [1] which focuses on the downlink. The main novelties are
the design of new algorithms for the uplink and the general-
ization of the protocols introduced in [1] allowing one to take
the maximal power constraints.

The paper is organized as follows. We first give a brief sur-
vey of the literature in section 2 and in section 3 fix the nota-
tion and recall some very basic formulas concerning CDMA.
In section 4 we remind the formulations of the power control
problems and give sufficient conditions for the existence of
solutions. The new decentralized admission and congestion
control algorithms based on these conditions are introduced
in section 5. The maximal load estimations are treated in sec-
tion 6. Numerical studies are gathered in section 7.

2. Related work

The problem of estimating the maximal load of CDMA net-
works has already been considered by several authors. Nettle-
ton and Alavi [2] first considered the power allocation prob-
lem in the cellular spread spectrum context.

By Gilhousen et al. [3], the problem was posed in the fol-
lowing way. Suppose Base Station number 1 (BS 1) emits
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at the total power P1 in the presence of K − 1 other BS’s,
which emit at power P2, . . . , PK , respectively. How many
users N1 can then BS 1 accommodate assuming that the load
of the network is only interference-limited and that each user
has a required bit rate of W? The sufficient condition (and
thus conservative load constraint) proposed in [3] reads

N1∑
i=1

ξi

(
1 +

K∑
k=2

(Pk)i

(P1)i
+ N

(P1)i

)
� 1. (2.1)

In this formula, (Pk)i is the power received by user i from
BS k and ξi = (Eb/N0)i/(πW/R), where (Eb/N0)i is the
bit energy-to-noise density ratio of user i; R,π , N are the
bandwidth, the fraction of the total power devoted to the pilot
signal and the external noise, respectively.

This simple condition allows for the determination of Ns

but it does not reflect a key feature, that in reality the total
power emitted by the BS should depend on the number of
users (and even on their locations), namely Pk should be a
function Pk(N1, . . . , NK).

In order to address this issue, Zander [4,5] expresses the
global power allocation problem by the multidimensional lin-
ear inequality

ZP � 1 + ξ

ξ
P (2.2)

with unknown vector P of emitted powers; here one assumes
the required signal-to-interference ratio ξ (or equivalently the
required user bit rate) to be given and one assumes the ma-
trix Z, the i, kth entry of which gives the normalized path-
losses between user i and BS k, to be given too. The main
result is then that the power allocation is feasible if there ex-
ists a non-negative, finite solution to (2.2); the necessary and
sufficient condition is that ξ < 1/(λ∗ − 1), where λ∗ is the
spectral radius of the (positive) matrix Z. In order to sim-
plify the problem, all same-cell channels are assumed to be
completely orthogonal and the external noise is suppressed.

Foschini and Miljanic [6] and Hanly [7] introduced exter-
nal noise to the model: Foschini considered a narrow-band
cellular network and Hanly a two-cell spread spectrum net-
work. On the basis of the previous works, Hanly extended
the model in several articles. Hanly [8] extends this approach
to the case with in-cell interference and external noise (es-
sentially for the uplink). Using the block structure of Z, he
solves the problem in two steps: first the own-cell power allo-
cation conditions are studied (microscopic view) and then the
macroscopic view considers some aggregated cell-powers.
He also interprets λ∗ as a measure of the traffic congestion
in the network.

The evaluation of λ∗ can be done either from a centralized
knowledge of the state of the network, which is non-practical
in large networks, or by channel probing as suggested in sec-
tion VIII of [8] and described in [9]. When it exists, the min-
imal finite solution of inequality (2.2) can also be evaluated
in a decentralized way (using Picard’s iteration of operator Z,
cf. the discussion in section IX of [10]). However this does
not provide decentralized admission or congestion control al-

gorithms, namely scalable ways of controlling the network
population or bit rates in such a way that the power allocation
problem remains feasible, namely that λ∗ remains less than
1 + 1/ξ .

The approach of [4,8] is continued in [1], where decen-
tralized admission/congestion control protocols are proposed
for the downlink, without maximal power constraints. These
protocols are based on the simple mathematical fact that the
maximal eigenvalue of any sub-stochastic matrix (matrix with
non-negative entries, whose row sums are less than 1) is less
than 1. This approach, when applied to the downlink power
allocation problem, takes a form similar to (2.1), with the re-
ceived power (Pk)i replaced by path-loss/gain from BS k to
user i. Since path-loss basically depends on the geometry
only and neither on the number of users served nor on the
powers emitted, our version of equation (2.1) no longer de-
pends implicitly on Nk .

In the present paper, we will discuss extensions of the
above approach that capture both down and up-link and take
into account the maximal power constraints.

3. Notation and basic relations

We will use the following notation:

3.1. Antenna locations and path loss

• {Yu}u = NBS: locations of BS’s; u is the number (index)
of BS and Yu denotes its location.

• Su: set of mobiles served by BS u.

• {Xu
m} = N u

M : locations of mobiles served by BS u.

• {Xm}m = NM : locations of all mobiles; m denotes the
mobile located at Xm.

• L(y, x): path-loss of the signal on the path y → x.

• l↓u
m = L(Yu,Xu

m): path-loss of the signal on the downlink
Yu → Xu

m.

• l↑u
m = L(Xu

m, Y u): path-loss of the signal on the uplink
Xu

m → Yu.

3.2. Engineering parameters

• αu: downlink (DL) orthogonality factor in BS u; let

αuv =
{

αu if u = v,
1 if u �= v,

• ξu
m: SINR threshold for user Xu

m; ξ↓u
m, ξ↑u

m if it is necessary
to distinguish the DL and uplink (UL). Moreover, for each
SINR ξ , we define a modified SINR ξ ′ by

ξ ′↓
u

m
= ξ↓u

m

1 + αuξ↓u
m

, ξ ′↑
u

m
= ξ↑u

m

1 + ξ↑u
m

, (3.1)

• P↓u
m: power of the dedicated channel u → m,

• P↑u
m: power transmitted by mobile m → u,
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• P̃ u: maximal total power of BS u (for the load estimates
we use also P↓ to denote the average maximal power that
does not depend on the BS index),

• P ′u: total power of the common channels (CCH) [11],

• Pu = P ′u +∑
m P↓u

m: total power transmitted by BS u,

• P̃ u
m: maximal power of mobile m ∈ Su (for the load esti-

mates we use also P↑ to denote the average maximal power
that does not depend on the mobile index),

• N : external noise; Nu, Nu
m, respectively, for the noise at

BS u and mobile m ∈ Su,

• R, R↓u
m,R↑u

m bit-rates; note that the theoretical maximal
bit-rate of the Gaussian channel is related to the SINR ξ

by

R = B log(1 + ξ ), (3.2)

where B is the bandwidth. In practice, the following bit-
rate is implemented

R = ξW

(E0/I0)
, (3.3)

where (E0/I0) is bit-energy-to-noise-ratio density, W is
the chip-rate.

4. Up- and downlink power control with power
constraints

In this section we describe the power control1 problems with
power constraints (so-called feasibility problems) and give
some sufficient conditions, called feasibility conditions, for
the existence of solutions. These conditions are the basis for
admission and congestion control algorithms proposed in the
next section.

4.1. Feasibility of power control with power constraints

4.1.1. Downlink
We will say that the (downlink) power allocation with power
limitations is feasible if there exist non-negative powers P↓u

m

for all base stations u and mobiles m, which satisfy the fol-
lowing two conditions:

(i) Signal to interference and noise ratio at each mobile is
larger than the threshold ξ↓u

m; i.e.,

P↓u
m/l↓u

m

Nu
m +∑

v αuv(P ′v +∑
n∈Sv

P↓v
n)/l↓

v
m

� ξ ′↓
u

m
,

for all u and m ∈ Su.

(ii) The total power transmitted by each base station is not
larger than its given limit

∑
m∈Su

P↓u
m + P ′u � P̃ u, for

all u.

We will say that the (downlink) power allocation (without
power limitations) is feasible if there exist non-negative pow-
ers P↓u

m such that condition (i) is satisfied.

1 We use equivalently power control and power allocation.

4.1.2. Uplink
We will say that the (uplink) power control with power con-
straints is feasible if there exist non-negative powers P↑u

m

such that the following two conditions are satisfied:

(i) Signal to interference and noise ratio at each BS is larger
than the threshold ξ↑u

m; i.e.,

P↑u
m/l↑u

m

Nu +∑
v

∑
n∈Sv

P↑v
n/l↑

u
n

� ξ ′↑
u

m

for all u,m ∈ Su.

(ii) The power transmitted by each mobile is not larger than
its given limit P↑u

m � P̃ u
m, for all u and m ∈ Su.

We will say that the (uplink) power control (without power
constraints) is feasible if there exist non-negative powers P↑u

m

such that condition (i) is satisfied.

4.2. Feasibility conditions

The following results hold (see the discussion in section 4.3
and proofs in section A.1).

4.2.1. Downlink
DPAFC (Downlink Power Allocation Feasibility Condition).
If for each BS u ∑

m∈Su

∑
v

αuvξ
′↓
u

m
l↓u

m

l↓v
m

< 1, (4.1)

then the downlink power control without power limitations is
feasible.

E-DPAFC (For Extended DPAFC). If for each BS u∑
m∈Su

(
Nu

m +
∑
v

αuvP̃
v

l↓v
m

)
l↓u

mξ ′↓
u

m
� P̃ u − P ′u (4.2)

then the downlink power control with power limitations is fea-
sible.

4.2.2. Uplink
UPAFC (Uplink Power Allocation Feasibility Condition). If
for each BS u ∑

m∈Su

∑
v

ξ ′↑
u

m
l↑u

m

l↑v
m

< 1 (4.3)

then the uplink power control without power limitations is
feasible.

UBC & ULC. If for some collection of reals θu ∈ [0, 1) the
following two conditions are satisfied

• UBC (Uplink Budget Condition)

θu � 1 − Nu sup
m∈Su

ξ ′↑
u

m
l↑u

m

P̃ u
m

(4.4)

for all u, and
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• ULC (Uplink Link Condition)∑
v

∑
n∈Sv

l↑v
nξ

′↑
v

n
Nv

l↑u
n(1 − θv)

� θuN
u

1 − θu

, (4.5)

then the uplink power control problem with power limitations
is feasible.

E-UPAFC. If for some collection of real numbers γuv � 0,
such that γu = ∑

v γuv < ∞, the following two conditions
are satisfied for all u(

Nu + γu

)
sup
m∈Su

ξ ′↑
u

m
l↑u

m

P̃ u
m

� 1 (4.6)

and

γu + Nu

γvu

∑
m∈Su

ξ ′↑
u

m
l↑u

m

l↑v
m

� 1 for all v, (4.7)

then the uplink power control problem with power limitations
is feasible.

4.3. Discussion of the conditions

4.3.1. Decentralization
We will say that a power control (or power allocation) con-
dition is decentralized if it is of the form: For each BS u

condition Cu holds, where Cu depends on the locations and
parameters of the users {m ∈ Su} served by BS u and, pos-
sibly, on the locations and parameters of all other BS’s, but
Cu does not depend on numbers, locations and parameters of
{n ∈ Sv} for v �= u.

Note that our conditions DPAFC, E-DPAFC, UPAFC and
E-UPAFC are decentralized in the sense of the above defini-
tion.

The interest in decentralized conditions stems from the fact
that an admission or congestion control algorithm based on
decentralized conditions is scalable when the size of the net-
work (number of base stations) increases.

4.3.2. Sufficiency
All our conditions are sufficient, but not necessary ones. This
means that the respective algorithms or maximal load esti-
mates will be conservative. However, loosely speaking our
conditions DPAFC, E-DPAFC, UPAFC and UBC & ULC,
E-UPAFC are almost necessary for a symmetric network
with similar traffic for all BS’s. Moreover the conditions
E-DPAFC and UBC & ULC are asymptotically equivalent to
DPAFC and UPAFC, respectively, for large maximal power
constraints. Below we explain the above statements.

It is known (see, e.g., [12]) that the necessary and suffi-
cient conditions for the feasibility of the downlink and uplink
power allocation problems, both without power constraints,
can be expressed in terms of the spectral radii of the ma-
trices of the so-called normalized path-losses: A = (auv),
auv = αuv

∑
m∈Su

ξ ′↓
u

m
l↓u

m/l↓v
m for the DL and B = (buv),

buv = ∑
n∈Sv

ξ ′↑
v

n
l↑v

n/l↑
u
n for the UL. (Note that the condi-

tions based on the evaluation or estimation of the spectral

radii of A, B are not decentralized.) Our conditions DPAFC
and UPAFC say that the matrices, respectively, A and B are
substochastic. More precisely, DPAFC says that all sums in
lines of A are less than 1, whereas UPAFC says that all sums
in columns of B are less than 1. The more lines (respectively
columns) of these matrices are similar to each other, the less is
the “space between” our sufficient conditions and the neces-
sary ones (in particular, note that for a matrix with identical all
lines (columns), the sums in lines (columns) are less than 1 if
and only if the spectral radius is less than 1). This means that
our conditions DPAFC and UPAFC should be almost neces-
sary for a symmetric network with random but homogeneous
traffic. This claim is the object of ongoing experimental veri-
fication.

Concerning the non-necessity of conditions E-DPAFC and
UBC & ULC, which take into account power limitations, note
first that letting P̃ u → ∞ uniformly for all u, in the condition
E-DPAFC, we get DPAFC. Similarly, assuming (for simplic-
ity) θu = θ and Nu = N and letting P̃ u

m → ∞ uniformly for
all u,m in the conditions UBC & ULC, we get a condition sta-
ting that matrix B is substochastic (sums in lines less than 1).
Thus we can say the conditions E-DPAFC and UBC & ULC
are asymptotically equivalent to DPAFC and UPAFC, respec-
tively, for large maximal power constraints.

In order to see why for a given finite P̃ u and P̃ u
m the

conditions E-DPAFC and UBC & ULC are not necessary,
note that all solutions (powers) of the power control prob-
lem 4.1.1(i) form a cone (whose intersection with the positive
orthant might be empty). The E-DPAFC requires that some
specific vector of powers, chosen such that the total power
emitted by each BS is equal to its maximal total power, lies
in this cone. It might in general be the case that the cone
of solutions intersects the positive orthant but does not con-
tain our specific solution. However, loosely speaking, this is
more likely in a non-symmetric situation, e.g., when the BS
are unequally loaded. Similar reasoning applies for the uplink
power control problem 4.1.2(i), with the specific solution on
which conditions UBC & ULC and E-UPAFC are based, be-
ing Nu/(1−θu) and Nuγu, respectively. All this means again
that the conditions UBC & ULC and E-UPAFC should be al-
most necessary for a symmetric network with similar traffic
for all BS’s.

4.3.3. The choice of γuv in E-DPAFC
The condition ULC is not decentralized because it sets the
threshold for the total interference received in each cell, and
it is only the interference emitted by each cell that can be
controlled locally. Thus, in order to guarantee the required
level of the interference received in a decentralized manner,
we have a priori to “reserve” some allowed levels of interfer-
ence between each pair of cells. This is done by the choice
of constants γuv . It seems reasonable to take these constants
proportional to the mean interference; i.e., to the mean value
of
∑

m∈Su
[. . .] in (4.7).
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4.3.4. Uplink implies downlink
Note that our conditions DPAFC and UPAFC coincide if the
path-loss does not depend on the direction of the communi-
cation (i.e., when l↓u

m ≡ l↑u
m) provided orthogonality factors

αuv = 1, in the case when the SINR targets are the same
for uplink and downlink. Moreover, under the same condi-
tions, the normalized path-losses matrices A and B are iden-
tical up to transposition, making if-and-only-if conditions for
both links equivalent. (A similar result for narrowband sys-
tems was given in [13].)

Since typically αuu = αu < 1 thus UPAFC implies
DPAFC and it is the uplink that forms the bottleneck for the
power allocation problem when there are no power constraints
and when the traffic (bit-rate) is symmetric between the uplink
and the downlink.

4.3.5. UBC & ULC – coverage and load
The choice of the parameter θ in conditions (4.4) and (4.5) is
related to the classical coverage/load tradeoff. Small θ allows
for more distant users in UBC, and thus gives larger coverage
but reduces load in UBC. Large (close to 1) θ gives larger load
in ULC but rejects remote users in UBC. We will address the
problem of the choice of θ in section 6.3.1.

5. Protocols based on the decentralized conditions

The decentralized conditions of the previous section allow us
to define admission control policies in the case of predefined
customer bit rates (e.g., voice); i.e., schemes allowing one
to decide whether a new customer can be admitted or should
be rejected as its admission could make the power allocation
and/or problem unfeasible, and congestion control policies in
the case of customers with elastic bit rates (e.g., data); i.e.,
schemes allowing one to determine the maximal fair customer
bit rates that preserve the feasibility of the power allocation
and/or control problem at any time, in function of the cus-
tomer population in all cells at this time.

5.1. Admission control

Assume the bit rates of all users (or equivalently all ξ ′↓
u

m
, ξ ′↑

u

m
parameters) to be specified. The admission control problem
can then be posed as follows: for a given mobile popula-
tion {m ∈ Su}, for all BS u, check whether the (downlink)
power allocation and the (uplink) power control with power
constraints (defined in section 4.1) are feasible. Here we de-
scribe (conservative) procedures built from the (sufficient) de-
centralized conditions given in section 4.2.

5.1.1. Downlink
Define the user’s m ∈ Su downlink-power-control load with
respect to BS u

f↓u
m =

(
Nu

m +
∑
v

αuvP̃
v

l↓v
m

)
l↓u

mξ ′↓
u

m

P̃ u
. (5.1)

Note that condition (4.1) is equivalent to∑
m∈Su

f↓u
m < 1, (5.2)

with P̃ v = P̃ u = ∞ in (5.1), whereas condition (4.2) is
equivalent to ∑

m∈Su

f↓u
m � 1 − P ′u

P̃ u
. (5.3)

This leads to the following algorithm.

(Extended) Downlink Admission Control Protocol
((E-)DACP). Each BS checks periodically whether condi-
tion (5.2) (or (5.3)) is satisfied and, if not, enforces it by re-
ducing the population {m: m ∈ Su} of its mobiles to some
subset s.t. the inequality holds with the reduced population.
When a new mobile user applies to some BS, the BS accepts
it if the respective condition is satisfied with this additional
user and rejects it otherwise.

Note that the application of DACP by all the BS’s guaran-
tees the global feasibility of the downlink power control prob-
lem 4.1.1(i) without power constraints, whereas the E-DACP
guarantees in addition that the solution of the power allocation
problem satisfies the maximal-power constraints 4.1.1(ii).
Moreover, it was shown in [1] that under DPAFC condition
P↓u

m = P̃ uf↓u
m for m ∈ Su are individual solutions of the

problem 4.1.1(i).

5.1.2. Uplink
Define the user’s m ∈ Su uplink-power-control load with re-
spect to BS v

f↑uv
m =

ξ ′↑
u

m
l↑u

m

l↑v
m

(5.4)

and the aggregated uplink-power-control load

f↑u
m =

∑
v

f↑uv
m . (5.5)

Note that the condition (4.3) is equivalent to∑
m∈Su

f↑u
m < 1, (5.6)

whereas (4.7) is equivalent to∑
m∈Su

f↑uv
m � γuv

γu + Nu
, for all v. (5.7)

Note also that (4.6) is satisfied iff

ξ ′↑
u

m
l↑u

m

P̃ u
m

� 1

Nu + γu

, (5.8)
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for all m ∈ Su. The above formulations lead to the following
algorithms.

Uplink Admission Control Protocol (UACP). Each BS
checks periodically whether condition (5.6) is satisfied and,
if not, enforces it by reducing the population {m: m ∈ Su}
of its mobiles to some subset s.t. the inequality holds with
the reduced population. When a new mobile user applies to
some BS, the BS accepts it if the condition is satisfied with
this additional user and rejects it otherwise.

Extended Uplink Admission Control Protocol (E-UACP).
Each BS first reduces the population of its mobiles {m: m ∈
Su} to those which satisfy condition (5.8). Moreover, each
BS checks periodically whether conditions (5.7) are satisfied
by the reduced population and, if not, enforces it by further
reducing the population to some subset s.t. the inequalities
hold with the further-reduced population. When a new mobile
user applies to some BS, the BS accepts it if it satisfies (5.8)

and if the conditions (5.7) are satisfied with this additional
user; the mobile is rejected if one of the above conditions is
violated.

Note that the application of the UACP by all the BS’s
guarantees the global feasibility of the uplink power control
problem 4.1.2(i) without power constraints, whereas the ap-
plication of the E-UACP by all the BS’s guarantees the global
feasibility of the uplink power control problem 4.1.2(i) with
power constraints 4.1.2(ii).

We see that the problem of power constraints in the up-
link is more tricky than in the downlink because it requires
individual control of the interference emitted toward each
BS (cf. (5.7)). However, note that if in a symmetric case
γuv = γvu we replace the collection of inequalities (5.7) by
one condition adding the inequalities up; i.e.,∑

m∈Su

f↑u
m � θu, (5.9)

taking θu = γu/(γu + Nu) and consequently rewriting (5.8)

ξ ′↑
u

m
l↑u

m

P̃ u
m

� 1 − θu

Nu
(5.10)

we can propose the following heuristic algorithm.

Simplified Extended Uplink Admission Control Proto-
col (SE-UACP). Each BS first reduces the population of
its mobiles {m: m ∈ Su} to those which satisfy condi-
tion (5.10). Moreover, each BS checks periodically whether
condition (5.9) is satisfied by the reduced population and, if
not, enforces it by further reducing the population to some
subset s.t. the inequality holds with the further-reduced pop-
ulation. When a new mobile user applies to some BS, the BS
accepts it if it satisfies (5.10) and if the condition (5.9) is sat-
isfied with this additional user; the mobile is rejected if one
of the above conditions is violated.

Note that the application of the SE-UACP by all the BS’s
only roughly ensures the global feasibility of the uplink power
control problem 4.1.1(i) with power constraints 4.1.1(ii).

5.2. Congestion control

In this section, we do not assume the bit rates of users (or
equivalently the ξ ′↓

u

m
, ξ ′↑

u

m
parameters) to be specified. We are

interested in a scheme for elastic traffic, namely for traffic
which can accommodate bit rate variations. We consider the
case with no admission control, where an increase of the num-
ber of users in a cell is just coped with via a reduction of the
bit rates of the users of this cell, like in TCP where the in-
crease of the number of competitors eventually results in a
decreased bit rate for all, and where no user is ever rejected.
We will look for a fair scheme in the downlink and the so-
called max-min fair scheme in the uplink. This means all
users in a given cell are supposed to have exactly the same
ξ↓u in the downlink, whereas for the uplink, ξ↑u

m (m ∈ Su)
results from the classical water-filling policy.

5.2.1. Downlink
Assume ξ ′↓

u

m
= ξ ′↓

u, for all m ∈ Su. Bearing in mind the

relation (3.1) note that (4.2) is equivalent to

ξ↓u � 1

max
(
0,

∑
m∈Su

(Nu
m+∑v αuvP̃ v/l↓v

m)l↓u
m

P̃ u−P ′u − αu

) . (5.11)

This leads to the following algorithm.

Downlink Congestion Control Protocol (DCCP). Each BS
periodically allocates to all mobiles in its cell the fair down-
link rate R↓u = R given by (3.3) with SINR ξ = ξ↓u satis-
fying equality in (5.11). This fair rate is also updated at any
time when a customer joins or leaves the cell.

5.2.2. Uplink
We first consider the condition E-UPAFC. Looking for a fair
assignment of bit-rates (or equivalently ξ↓u

m or ξ ′↓
u

m
) in the

presence of the individual constraints (4.6) requires applica-
tion of the so called max-min fair policy (or water-filling pol-
icy; see [14]). Roughly speaking, it aims at allocating as much
load as they can accept to users experiencing difficult condi-
tions, and an equal share to others. Formally, denote by

ξ̃ u
m = P̃ u

m

l↑u
m(Nu + γu)

(5.12)

the maximal modified-SIR reachable by the mobile m ∈ Su;
define the equal-share level of the modified SIR by

ξ ′↑
u = sup

{
ξ : sup

v

γu + Nu

γvu

∑
m∈Su

min
(
ξ, ξ̃u

m

) l↑u
m

l↑v
m

� 1

}
(5.13)

and the individual modified SINR’s by

ξ ′↑
u

m
= min

(
ξ̃ u
m, ξ ′↑

u)
. (5.14)

This leads to the following algorithm.
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Uplink Congestion Control Protocol (UCCP). Each BS pe-
riodically allocates to each mobile in its cell the max-min
fair uplink rate R↑u

m = R given by (3.3) with SINR ξ =
ξ ′↑

u

m
/(1 − ξ ′↑

u

m
) where ξ ′↑

u

m
is given by (5.14). This fair rate is

also updated at any time when a customer joins or leaves the
cell.

Note that similarly to admission control, we can imple-
ment a simplified (heuristic) uplink congestion control based
on conditions (5.9) and (5.10). For this it suffices to replace
the formulas (5.12) and (5.13), respectively, by the following
ones

ξ̃ u
m = P̃ u

m(1 − θu)

l↑u
mNu

(5.15)

and

ξ ′↑
u = sup

{
ξ :

∑
m∈Su

min
(
ξ, ξ̃u

m

)∑
v

l↑u
m

l↑v
m

� θu

}
. (5.16)

6. Maximal load estimations based on the decentralized
conditions

The decentralized conditions of section 4.2 also provide con-
servative bounds for the maximal load of the network. We
will consider two extreme and complementary architectures:
the infinite Hexagonal model that represents large perfectly
structured networks and the infinite, homogeneous Poisson
model that takes into account irregularities of a large real net-
works in a statistical way. In both models we assume station-
ary Poisson distribution of users, and also assume that each is
served by its nearest BS.

Fix a network architecture and its parameters, in particular
the spatial density of its BS’s.

The maximal admission load estimation for fixed bit rate
traffic aims at finding the maximal density of users such
that the decentralized conditions of section 4.2 hold with
sufficiently high probability.

The maximal throughput estimation for elastic traffic aims
at finding the maximal fair bit-rates such that the decen-
tralized conditions of section 4.2 hold with sufficiently high
probability.

6.1. From hexagonal to Poisson model

Denote by λBS the mean number of BS’s per km2. Each BS
serves users in its cell defined as the set of locations in the
plane which are closer to that BS than to any other BS. It is
convenient to relate λBS to the radius R of the (virtual) disc
whose area is equal to that of the area (mean area, in the Pois-
son case) of the cell, by the formula

λBS = 1/
(
πR2).

Bearing this definition in mind, we will sometimes call R the
radius of the cell.

6.1.1. Hexagonal model (Hex)
In the hexagonal model, the radius R is related to the the dis-
tance � between two adjacent BS’s by �2 = 2πR2/

√
3. The

BS’s are located on the grid denoted on the complex plane by
{Yu: Yu = �(u1 + u2eiπ/3), u = (u1, u2) ∈ {0,±1, . . .}2}.
The cell-pattern in this model is sometimes called honeycomb.

6.1.2. Poisson model (PV)
In the Poisson case {Yu} constitutes the Poisson process on
the plane, with intensity λBS. The cell patterns in this model
are called Poisson–Voronoi tessellation. Note that in the
Poisson–Voronoi model BS-locations as well as cells are ran-
dom. We always assume that the Poisson process of BS’s is
independent of all other random elements considered in the
sequel.

In both models we assume a homogeneous Poisson process
of users {Xm}, with intensity λM ; thus λM is the mean num-
ber of users per km2. In both models, we denote by V u

the Voronoi cell of BS Yu. BS Yu thus serves mobiles
{m ∈ Su} = {Xm ∈ V u}.

We model path-loss on distance r by

L(r) = (Kr)η, (6.1)

where η > 2 is the so-called path-loss exponent and K > 0
is a multiplicative constant.

Other characteristics, like powers P̃ u, P̃m, SINR’s ξ↓u
m, ξ↑u

m

etc., are assumed in both models to be independent, identi-
cally distributed random variables. It is reasonable to assume
that common channel powers P ′u are given by independent,
identically distributed fractions P ′u/P̃ u.

6.2. Mean value approach

A first estimate of maximal load that provides explicit for-
mulas consists in studying the conditions of section 4.2 “in
mean”. In order to present the results, it is convenient to
adopt the following notation. Let M = λM/λBS be the mean
number of users per BS. Moreover denote by N = EN ,
ξ̄ ′↓ = Eξ ′↓ , ξ̄ ′↑ = Eξ ′↑ , P↓ = EP̃ u, P↑ = EP̃m the respective
means of the noise, modified SINR’s and maximal powers.
Let π̄ = E[P ′/P̃ ] be the mean fraction of the maximal power
devoted to the common channels.

6.2.1. Downlink
Taking expectation on both sides of (4.2), we get the follow-
ing relation between the mean number of users per cell and
the radius R of the cell in the context of power allocation with
power constraints.

M � 1 − π̄

ξ̄ ′↓(α + f̄ + L(R)Nḡ/P↓)
, (6.2)

where

f̄ =
{

f̄PV = 2/(η − 2) for the PV model,

f̄Hex ≈ 0.9365/(η − 2) for the Hex model
(6.3)
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(the approximation for the Hex model is a least square fit
of some more precise function by the linear function of
1/(η − 2), for η ∈ [2.2, 5]);

ḡ =
{

ḡPV = 	(1 + η/2) for the PV model,

ḡHex ≈ (1 + η/2)−1 for the Hex model.
(6.4)

Moreover, letting P↓ → ∞, and π̄ → 0, in (6.2) we get the
mean version of the condition DPAFC (4.1).

6.2.2. Uplink
Assuming θu = θ and comparing the expectation of the left-
hand side of (4.5) to some lower bound (Jensen inequality) of
the expectation of the right-hand side of (4.4), we get the fol-
lowing relation between the mean number of users M per cell
and the radius R of the cell (in the context of power control
with power constraints and of constant ξ ′↑

u

m
/P̃ u

m ≡ ξ̄ ′↑/P↑, i.e.,

when neglecting the variation of ξ ′↑ and P̃ with respect to the
variation of the path-loss):

M �
1/ξ̄ ′↑ − NL(R)h̄(M)/P↑

1 + f̄
, (6.5)

where f̄ is given by (6.3) and the function h̄(s) for PV and
Hex model, respectively, is given by

h̄(s) =


h̄PV(s) =

∫ ∞

0
1 − e−se−z2/η

dz,

h̄Hex(s) ≈
∫ 1

0
1 − e−s(1−z2/η) dz.

(6.6)

Moreover, letting P↑ → ∞ in (6.5) we get the mean version
of the condition UPAFC (4.3).

Replacing supm∈Su
over the random set of users in (4.4) by

the sup over the entire cell in Hex model, we get a simplified,
but a bit more restrictive “mean load with full coverage”:

M �
1/ξ̄ ′↑ − L(R)N/P↑

1 + f̄
. (6.7)

6.3. Probability of rejection

Another and more accurate load estimation consists in look-
ing for the maximal density of users such that our decentral-
ized admission control protocols admit all users with a given
(high) probability (we concentrate here on admission control).
The problem can be formalized as follows. Fix a typical BS,
say no 0, and let the “CONDITION” be any of the condi-
tions {DPAFC, E-DPAFC, UPAFC, UBC & UBC, E-UPAFC,
(5.9) & (5.10)}.
Maximal load at a given probability of rejection. For
a given density of BS λBS > 0 (equivalently, cell radius
R < ∞) and CPR (Cell Probability of Rejection) ε > 0,
let λε

M = λε
M(λBS) be the maximal density of users (equiva-

lently, the mean number M = M
ε
(R) of users per cell) such

that

Pr(“CONDITION” holds for typical BS) � 1 − ε. (6.8)

This requires estimates for the distribution functions of the
sums

∑
m∈S0

fm, where fm is the load associated to the user
m in the “CONDITION”. Note also that (4.6) requires ways
of estimating the distribution function of the random variable
supm∈S0

ξ ′↑
0
m
l↑0

m/P̃ 0
m.

In the next subsection we briefly review the main ideas for
estimating these distributions and hence CPR: simulation and
analytical bounds or approximations.

Before this, we will comment on the choice of the parame-
ter θ in UBC & ULC.

6.3.1. Coverage/load tradeoff
Note that in the uplink we have two competing conditions
(4.4) and (4.6) related to, respectively, coverage and load (see
section 4.3.5). In this context, two error-probabilities are usu-
ally given: εcov > 0 and εcap > 0, with typically εcov < εcap.
The maximal load can then be defined as the maximal den-
sity of users such that UBC and ULC hold with probabilities
1− εcov and 1− εcap, respectively. Since εcov is typically very
small, the following simplified solution, which guarantees full
coverage in the Hex model, looks satisfactory: First choose θ

that satisfies condition (4.4) with sup taken over the whole
cell (and not over the random set of users in the cell). Then
use this value of θ to calculate the maximal load via (4.5) at
the given εcap.

6.3.2. Techniques for CPR estimation
Let fm,m ∈ S0 be the loads of users brought to the typical BS
(say no 0) according to the given “CONDITION”. The point
is to estimate the probability of events of the form:

E(z) =
{∑

m∈S0

fm � z

}
(6.9)

for z � 0.

Complete simulation. We choose a discrete set of test inten-
sities (of mobiles) λ0 < λ1 < · · · < λk and simulate k inde-
pendent patterns of Poisson point processesNi (i = 0, . . . , k)
with respective intensities λ0 and �i = λi − λi−1 in the
cell V 0 of BS 0 generated by a given pattern NBS. Let
Fi(z) = 1(E(z)) be the indicator that the event (6.9) holds
for the population of mobiles NM = ∑i

j=0 Nj . Obvi-
ously E[Fi ] = Pr(E(z)) at λM = λi and Fi is increasing
in i. The same holds for F

(n)
i = 1/n

∑n
u=1 Fi,u, where

(Fi,u, i = 0, . . . , k), u = 1, . . . , n are independent copies
of (Fi, i = 0, . . . , k). In addition, F

(n)
i converges a.s. to

Pr(E(z)) at λM = λi as n → ∞.

Chebychev’s inequality. This requires some ways of esti-
mating (upper-bounding) of the variance Var[∑m∈S0

fm]. If
it is available, then

Pr
(
E(z)

)
�

Var[∑m∈S0
fm]

(z − E[∑m∈S0
fm])2 .
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Gaussian approximation. If an estimator (upper bound) of
the variance Var[∑m∈S0

fm] is available, then

Pr
(
E(z)

) ≈ Q

(
z − E[∑m∈S0

fm]√
Var[∑m∈S0

fm]

)
,

where Q(z) = 1/
√

2π
∫∞
z

e−t2/2 dt is the Gaussian tail dis-
tribution function.

6.3.3. Formulas
We now give explicit formulas for exact values or bounds of
the probabilities, expectations, variances and Laplace trans-
forms required in techniques mentioned in previous section.
We concentrate on the condition E-DPAFC for the downlink
with its associated load f↓0

m given by (5.1) and on the condi-
tions UPAFC and (5.9), with their load f↑0

m given by (5.5).
For the user-maximal power constraints, we give approxi-
mations of the tail distribution function of the sup in (4.4)
and (4.6). For simplicity, we assume that all the users and
BS characteristics but their locations are deterministic (their
variations are negligible with respect to the variations due to
locations of antennas).

Probabilities.

Pr

(
sup
m∈S0

ξ↑ l↑0
m

P̃
> z

)
� 1 − exp

[
−Mφ

((
zP̃

ξ ′↑L(R)

)2/η)]
,

(6.10)
where

φ =
{

φPV = e−r for PV model,

φHex ≈ max(0, 1 − r) for Hex model
(6.11)

and for the Hex model we have equality in (6.10).

Expectations.

E

[ ∑
m∈S0

f↓0
m

]
= Mξ̄ ′↓

(
α + f̄ + L(R)N ḡ

P↓

)
,

E

[ ∑
m∈S0

f↑0
m

]
= Mξ̄ ′↑

(
1 + f̄

)
,

where f̄ , ḡ are given by (6.3), (6.4), respectively.

Variances. We concentrate on the Hex model only. We have

Var

[ ∑
m∈S0

f↓0
m

]
= M ξ̄ ′↓

2
(

N
2
L2(R)ḡ(2η)

P↓
2 + α2 + f 2

+ 2

(
αf̄ + NL(R)(αḡ + lf )

P↓

))
,

Var

[ ∑
m∈S0

f↑0
m

]
= M ξ̄ ′↑

2(
f 2 + 1 + 2f̄

)
,

where f̄ , ḡ are given by (6.3), (6.4), ḡ(2η) denotes ḡ calcu-
lated at doubled path-loss exponent and

f 2 = f 2
Hex ≈ 0.2343

(η − 2)
+ 1.2907

(η − 2)2
(6.12)

and

lf = lf Hex ≈ 0.6362

η − 2
; (6.13)

these approximations are appropriate least square fits for η ∈
[2.5, 5]. We remark also that corresponding (exact) values for
the PV model are f 2

PV = 8/(η−2)2 +1/(η−1) and lf PV =
	(2 + η/2)/2, but the formula for the variance requires some
positive correcting term due to the randomness of the cell size.

6.3.4. Load for the Hex model
Using the Gaussian approximation we get the following ex-
plicit formulas for the mean number of users per cell in the
Hexagonal model at a given per-cell probability ε of rejection
in E-DPAFC

M � M↓− (Q−1(ε))2X2↓
2X

2
↓

(√√√√4(1 − π̄)X↓
ξ̄ ′↓X2↓

+ 1−1

)
, (6.14)

where M↓ is the upper bound for M given by the mean model
(i.e., the right-hand side of (6.2)) and

X↓ = α + f̄Hex + L(R)N ḡHex

P↓
,

X2↓ = N
2
L2(R)ḡHex(2η)

P↓
2 + α2 + f 2

Hex

+ 2

(
αf̄Hex + NL(R)(αḡHex + lf Hex)

P↓[ ]
)

.

Similarly for the uplink (considering SE-UACP with full cov-
erage)

M � M↑ − (Q−1(ε))2X2↑
2X

2
↑

×
(√√√√4(1/ξ̄ ′↑ − L(R)N/P↑)X↑

X2↑
+ 1 − 1

)
, (6.15)

where M↑ is the upper bound for M given by the mean model
(i.e., the right-hand side of (6.7) and

X↑ = 1 + f̄Hex,

X2↑ = 1 + f 2
Hex + 2f̄Hex.

7. Numerical results

7.1. Model specification

We will study the maximal load estimations for the models
with different size of the typical cell, parametrized by the
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distance R between adjacent BS’s. The following values are
fixed for the study.

Path loss. η = 3.38, K = 8667.

Physical layer parameters. α = 0.4, ξ↓ = ξ↑ = −16 dB,
Nu = −105 dBm, Nm = −103 dBm (external noise at the
BS and user, respectively), P̃ u = 52 dBm, P̃m = 33 dBm
(maximal powers of BS and mobile, respectively, including
antenna gains and losses), P ′ = 42.73 dBm. (The above
values correspond to the UMTS system [11].)

Mean factors. For the specific value η = 3.38 we get the
following values of the mean factors: ḡPV = 1.5325, ḡHex =
0.3717, ḡHex(2η) = 0.2283, f̄PV = 1.4493, f̄Hex = 0.6564,

f 2
Hex = 0.8703, lf Hex = 0.4394 (see section 6.3.3 and ap-

pendix A.2).

7.2. Mean load estimations

The mean-load estimations given by formulas (6.2) and (6.5)
are presented on figure 1. The upper curves correspond to the
Hex model and lower curves to the PV model.

For the DL, the mean load with maximal power P̃ = ∞
is about 38 and 22 for Hex and PV, respectively, and does
not depend on R. On the plots we can recognize a region of
(small) R for which M is constant, where the power constraint
can be ignored and the E-DPAFC can be replaced by DPAFC
with 1 − π on the right-hand side of (4.1).

For the UL, the mean load with maximal power P̃ = ∞
is about the same as load at R = 0. We can also recog-

Figure 1. Mean-load estimations for the downlink (DL) and uplink (UL), for the Hex model (upper curves) and PV model (lower curves). The dashed curve
for the UL represents estimator for the Hex model with fully guaranteed coverage.

Figure 2. Probability of rejection in EDPAFC (DL) and in SE-UACP (UL) as function of M for various R. Simulated – solid line, Gaussian approximation –
dashed line.
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Figure 3. Maximal load estimations in Hexagonal model at a given CPR ε = 0.2, 0.1, 0.05, 0.02, 0.01 (solid lines) for the downlink (DL) and uplink (UL).
The dashed curves represent the values for the mean model.

nize a region of (small) R for which M is constant, where
the power constraint can be ignored and the UBC & ULC can
be replaced by UPAFC. The dashed curve for the UL presents
mean load for Hex model with fully guaranteed coverage (for-
mula (6.7), whereas the solid curve for this case represents the
coverage guaranteed “in mean” (formula (6.5)).

7.3. Maximal load for given CPR

We concentrate on Hex model. In order to estimate the max-
imal load at given CPR, we estimate per-cell probabilities of
user rejection when applying E-DPAFC for the downlink and
UBC & ULC for the uplink. Figure 2 presents simulated
(solid lines) and Gaussian-approximated (dashed lines) prob-
abilities for various cell sizes. For the DL, we have from the
right to the left: probability for DPAFC (which does not de-
pend on R), then for E-DPAFC with R = 1, 2, 3, 4, 5. For the
UL, from the right to the left we have: probability for UPAFC
(which does not depend on R and is about the same as this
for SE-UACP for R = 1) and then SE-UACP for R = 2, 3, 4.
We see that Gaussian approximation fits relatively well the
simulated values. We can thus use these approximations to
get maximal load estimations (6.14) and (6.15). Numerical
results for ε = 0.2, 0.1, 0.05, 0.02, 0.01 are presented on fig-
ure 3.

8. Conclusion

This paper builds scalable and decentralized admission/con-
gestion control schemes. These algorithms take into account
in an exact way the influence of the geometry on interferences
as well as the existence of maximal power constraints.

Analytical methods for evaluating the global up- and
downlink maximal load of CDMA networks are given.

Closed form approximations are built. Numerical studies
show that these approximations are convenient and permit fast
capacity evaluation of large UMTS networks.

The maximal load evaluation is based on the probability of
non-feasible configurations. Another possible evaluation cri-
terion is the blocking probability for voice users. We will try
to build closed form expressions for the blocking probability
in future studies.

Appendix: Summary of mathematical results

This section collects mathematical formulas, proofs of state-
ments, etc. Eventually it will be moved to a separate report or
kept in an extended version of the paper.

A.1. Proofs of feasibility conditions

A.1.1. Downlink
The DPAFC condition (4.1) was derived in details in [1]. It
is shown there that the feasibility problem of downlink power
allocation without power constraints (i.e., condition 4.1.1(i))
is equivalent to existence of finite, non-negative solutions
H = (Hu) of the following linear inequality

(I − A)H � b, (A.1)

were A = (auv), auv = αuv

∑
m∈Su

ξ ′↓
u

m
l↓u

m/l↓v
m, b = (bu),

bu = P ′u +∑
m∈Su

ξ ′↓
u

m
Nu

ml↓u
m and I is the respective identity

matrix. The inequality (A.1) has solutions if and only if the
spectral radius of A is less then 1. A sufficient condition for
this is proposed in [1], and saying that A has all line-sums
less than 1 (substochasticity of A), is our DPAFC (4.1) con-
dition. Condition E-DPAFC (4.2) is equivalent to saying that
(I − A)̃P � b where P̃ = (P̃ u) that is obviously sufficient
for existence of solutions of (A.1). Now, it is shown in [1]
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that if (P̃ u) satisfy (A.1) then P↓u
m = P̃ uf↓u

m for m ∈ Su are
(minimal) solutions of the problem 4.1.1(i). Obviously, under
E-DPAFC (4.2) the power constraints 4.1.1(ii) are satisfied.

A.1.2. Uplink
Denote J = (Ju), Ju = Nu + ∑

v

∑
n∈Sv

P↑v
n/l↑

u
n and let

B = (buv), buv = ∑
n∈Sv

ξ ′↑
v

n
l↑v

n/l↑
u
n, N = (Nu). Note that

feasibility of the uplink power control problem 4.1.1(i) with
power constraints 4.1.1(ii) is equivalent to the existence of
non-negative finite solutions J = (Ju) of the inequality

(I − B)J � N (A.2)

under constraints for all u

Juξ
′↑
u

m
l↑u

m � P̃ u
m for all m ∈ Su. (A.3)

The condition UPAFC (4.3) says that the matrix B is substo-
chastic (has all sums in columns) less than 1, and thus it is
a sufficient condition for the existence of solutions of (A.2).
The condition ULC (4.5) says that Ju = Nu/(1 − θu) is a
solution of (A.2) and UBC (4.4) guarantees (A.3). For the
E-UPAFC, denote C = (cuv), cuv = γuv/(N

v +γv), and note
that the condition (4.7) means that B � C coordinate-wise.
Thus the solution Ju = Nu+γu of the inequality (I−C)J � N
is also a solution of (A.2). Moreover, condition (4.6) guaran-
tees (A.3).

A.2. Means and probabilities

We will consider probabilities and means calculated for two
models, (Hex) and (PV) described in sections 6.1.1 and 6.1.2
with path-loss function given by (6.1). We will use nota-

tion
Hex= and

PV= to mark equalities that hold for the respective
models; = denotes equality that holds for both models. Sim-
ilar convention is adopted for other relations, as, e.g., �,≈.
Moreover lhs(number) denotes the left-hand side of the for-
mula with the given number. If it is not stated otherwise,
all expectations are taken with respect to the so called Palm
probability given there is a (typical) BS at the origin (see,
e.g., [15]).

A.2.1. Means of the sums
∑

m∈S0
[. . .]

E

[
α0

∑
m∈S0

ξ ′↓
0
m

]
= λM

λBS
α0E

[
ξ ′↓

0] = Mαξ̄ ′↓,

E

[∑
m∈S0

N0
mξ ′↓

0
m
l↓0

m

]
= M Nξ̄ ′↓L(R)ḡ,

E
[
lhs(4.1)

]= Mαξ̄ ′↓
(
1 + f̄

)
,

where f̄ and ḡ depend only on the propagation exponent η.

For PV model, f̄
PV= 2/(η − 2), ḡ

PV= 	(1 + η/2), (see [1]).
For Hex model, we suppose that base stations are placed on
a regular hexagonal grid and we approximate cells with discs
with the same area as the hexagons. It is easy to show that

ḡ
Hex≈ 1/(1 + η/2). On the other hand numerical calculation

of f̄ shows that f̄
Hex≈ 1/(η − 2).

A.2.2. Variances of the sums
∑

m∈S0
[. . .]

Note that for the Hex model, the sum
∑

m∈S0
[fm] is

a compound Poisson random variable and we have
Var[∑m∈S0

fm] = ME[f 2
m]. The moments of the random

variable fm are calculated numerically.

A.2.3. Distribution and mean of supm∈S0
[. . .]

Now we will study the sup in (4.4). Its distribution function
can be expressed by the Laplace transform of the shot noise

Pr

(
sup
m∈S0

(
ξ ′↑

0
m
l↑0

m

P̃ 0
m

)
� z

)
= E

[
exp

[∑
m∈S0

ln

(
1

(
(ξ ′↑

0
m
l↑0

m

P̃ 0
m � z

))]]

and thus, for any model with Poisson arrivals

Pr
(

sup
m∈S0

(. . .) � z
)

= EBS

[
exp

(
−λM |V 0| Pr

(
ξ ′↑

0
m
l↑0

m

P̃ 0
m > z

))]
,

where |V 0| is the area covered by BS 0 and EBS[. . .] means
averaging over BS’s configuration and concerns only the PV
model. Consequently (by Jensen inequality for PV model)

Pr
(

sup
m∈S0

(. . .) � z
)

Hex= (PV
�
)

exp

(
−ME

[
φ

((
zP̃ 0

m

ξ ′↑
0
m
L(R)

)2/η)])
,

where the function φ( ) depends on the model and

φ(r)
PV= e−r for r � 0,

φ(r)
Hex=



1 − r for 0 � r � π

2
√

3
,

1 − r −
√

6
√

3r

π
− 3 + 6r

π
arccos

(√
π

√
3√

6r

)
for

π

2
√

3
� r � 2π

3
√

3
.

Note that φ(r)
Hex
� max(0, 1−r) and in sequel, we will use the

approximation φ(r)
Hex≈ max(0, 1 − r). For the expectation,

we have thus

E
[

sup
m∈S0

(. . .)
]

Hex= (PV
�
) ∫ ∞

0
1 − exp

[
−ME

[
φ

((
zP̃ 0

m

ξ ′↑
0
m
L(R)

)2/η)]]
dz.

Now, developing in Taylor series with respect to M, we have
for the Hex model∫ ∞

0
1 − exp

[−ME
[
φ(. . .)

]]
dz

Hex≈ L(R)

(
E

[
P̃ 0

m

ξ ′↑
0
m

]2/η)−η/2 ∞∑
n=1

(−1)n+1M
n
η	(η/2)

2	(η/2 + n + 1)
.
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Similarly for PV model∫ ∞

0
1 − exp

[−ME
[
φ(. . .)

]]
dz

PV= L(R)
η

2
	

(
η

2

) ∞∑
n=1

(−1)n+1M
n

n!

× E

[(
n∑

m=1

(
P̃ 0

m

ξ ′↑
0
m

)2/η
)−η/2]

.

Concluding, note that in the case of constant ξ ′↑
u

m
/P̃ u

m ≡ ξ̄ ′↑/P↑
we have

E

[
sup
m∈S0

(
ξ ′↑

0
m
l↑0

m

P̃ 0
m

)]
Hex≈

(PV
�
)
L(R)ξ̄ ′↑h̄(M)/P̃,

where

h̄(s)
Hex≈

∫ 1

0
1 − e−s(1−z2/η) dz =

∞∑
n=1

(−1)n+1snη	(η/2)

2	(η/2 + n + 1)
,

h̄(s)
PV=

∫ ∞

0
1 − e−se−z2/η

dz = η

2
	

(
η

2

) ∞∑
n=1

(−1)n+1sn

n!nη/2 .
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[14] B. Radunović and J.L. Boudec, A unified framework for max-min and
min-max fairness with applications, in: Proc. of Allerton’02 (2002).

[15] D. Stoyan, W. Kendall and J. Mecke, Stochastic Geometry and Its Ap-
plications (Wiley, Chichester, 1995).

François Baccelli got his Doctoral d’État from Uni-
versité de Paris-Sud, in 1983, and the Engineering
degree from École Nationale Supérieure des Télé-
communications, Paris, in 1977. His research inter-
ests are in the modelling and performance evaluation
of computer and communication systems. He coau-
thored a 1994 Springer Verlag book on queueing the-
ory, jointly with P. Brémaud, and a 1992 Wiley book
on the modelling of synchronization, with G. Co-
hen, G.J. Olsder and J.P. Quadrat. He has been the

head of the Mistral research group of INRIA Sophia-Antipolis, France, from
its creation to 1999. He was a partner in several European projects includ-
ing IMSE (Esprit 2) and ALAPEDES (TMR), and was the coordinator of the
BRA Qmips project. He is currently INRIA Directeur de Recherche in the
Computer Science Department of École Normale Supérieure in Paris, where
he started the TREC performance evaluation group in 1999. He is also a part
time Professor at École Polytechnique, in the Applied Mathematics Depart-
ment.
E-mail: Francois.Baccelli@ens.fr
WWW: di.ens.fr/∼baccelli/

Bartłomiej Błaszczyszyn received his M.S. and
Ph.D. degrees in applied mathematics from Univer-
sity of Wrocław (Poland) in 1990 and 1995, respec-
tively. He is an Assistant Professor of Mathematical
Institute, University of Wrocław, and a staff member
of joint INRIA-ENS research team in Paris. His pro-
fessional interests are in applied probability and in
particular in modeling of communication networks
by means of stochastic geometry.
E-mail: Bartek.Blaszczyszyn@ens.fr

WWW: di.ens.fr/∼blaszczy/

Mohamed Kadhem Karray received his Engi-
neer degree from the École Polytechnique and the
École Nationale Supérieure des Télécommunica-
tions, Paris, France, in 1991 and 1993, respectively.

In 1993, he joined the Research and Develop-
ment Center of France Telecom, Issy Les Moulin-
eaux, France, where he is currently involved in mo-
bile communication design and performances stud-
ies.
E-mail: mohamed.karray@francetelecom.com


