Blocking Rates in Large CDMA Networks via
a Spatial Erlang Formula

Francois Baccelli
INRIA & Ecole Normale Supérieure,
45 rue d'Ulm,
75005 Paris FRANCE
Francois.Baccelli @ens. fr

Bartlomiej Blaszczyszyn
INRIA & ENS and
Mathematical Institute University of Wroctaw
45 rue d’Ulm,
75005 Paris FRANCE

Mohamed Kadhem Karray
France Télécom R&D,
38/40 rue du Général Leclerc,
92794 Issy-Moulineaux France,
mohamed. karray @rd.francetelecom.com

Bartek .Blaszezyszyn@ens. fr

Abstract— This paper builds upen the scalable admission
control schemes for CDMA networks developed in [1], [2}. These
schemes are based on an exact representation of the geometry
of both the downlink and the uplink channels and ensure that
the associated power allocation problems have solutions under
constraints on the maximal power of each station/user. These
schemes are decentralized in that they can be implemented in
such a way that each base station only has to consider the
load brought by its own users to decide on admission. By load
we mean here some function of the configuration of the users
and of their bit rates that is described in the paper. When
implemented in each base station, such schemes ensure the global
feasibility of the power allocation even in a very large (infinite
number of cells) network. The estimation of the capacity of large
CDMA networks controlled by such schemes was made in these
references. In certain cases, for example for a Poisson pattern of
mobiles in an hexagonal network of base stations, this approach
gives explicit formulas for the infeasibility probability, defined
as the fraction of cells where the population of users cannot he
entirely admitted by the base station. In the present paper we
show that the notion of infeasibility probability is closely related
to the notion of blocking probability, defined as the fraction of
users that are rejected by the admission control policy in the
long run, a notion of central practical importance within this
setting, The relation between these two notions is not bound to
our particular admission control schemes, but is of more general
nature, and in a simplified scenario it can be identified with the
well-known Erlang loss formula. We prove this relation using a
general spatial birth-and-death process, where customer locations
are represented by a spatial point process that evolves over time
as users arrive or depart. This allows our model to include the
exact representation of the geometry of inter-cell and intra-cell
interferences, which play an essential role in the load indicators
used in these cellular network admission control schemes.

I. INTRODUCTION

Consider calls arriving to some infinite server queue ac-
cording to a time Poisson point process with intensity A,
and suppose each call has an exponential holding time with
mean 7. It is well known that the number of calls in progress
observed in the steady state of such a non-constrained model
is a Poisson random varigble N with mean Ar. Consider
now some positive integer €. We define the feasibilitv (resp.
infeasibility) probability for C as P(N < ) (resp. (P(N >
C)). In general, these probabilities have nothing to do with
the dynamics of the model where calls are rejected when
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their number exceeds C. For the latter we need 1o describe
an admission control policy which specifies how the model
performs when the € limit is reached. The classical loss
system simply drops the calls that arrive when there are C
calls already in progress. In this case, we define the blocking
probability as the fraction of calls that are dropped in the long
run by the svstem, Erlang’s formula (see e.g. [3)) states that
the blocking probability b is

So Formula (1.1) shows that in spite of the difterences between
the dynamics of the non-constrained and that of the loss
system, the blocking probability can be expressed in terms
of the steady state distribution of calls in progress of the non-
constrained system,

As well known, Erlang published this formula in 1917,
and since thal time, the statistical equilibria of much more
complicated loss networks have been found to coincide with
the truncation of the stationary distribution of some non-
constrained system to some polytope. This lead to the calcu-
lation of the associated blocking probabilities in explicit form
for large classes of networks. For an exhaustive survey on ioss
systemns, see [3]).

Classical loss modeis are well adapted to wired communi-
cation networks, where the spatial component of the model
is typically represented by some graph of links, and where
the coexistence of calls on a common link is modeled by
the occupancy of a discrete number of circuits available
on this link. In wireless communication, one needs to take
into account the spatial characteristics of the network in a
more thorough way because it is the relative location of the
radio channels which determines their joint feasibility. This
is especially important for Code Division Multiple Access
(CDMA) and other so called interference limited systems, One
of the additional difficulties then stems from the fact that the
spatial component of the model is subject to changes due
to the mobility of users and instantaneous changes of radio
conditions.

In CDMA, a given configuration of channels with prede-
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fined bit-rates is feasible if there exist some vector of emitted
powers which guarantee that the Signal-to-Interference-and-
Noise-Ratio (SINR) at each receiver exceeds some threshold
defined by the bit rate of the associated channel. The solution
to this power allocation problem may also be constrained by
further limitations on the maximum power of stations/users.

The main contribution of the paper is the connection that
is established between the notion of the feasibilty probability
defined in [1], [2] in connection with the admission control
schemes alluded to in the abstract, and the notion of blocking
probability, defined again as the {raction of users that are
rejecied by the admission control policy in its long rumn.

The paper is organized as follows. In Section II we make
a short survey of the literamre on performance evaluation
of load control schemes for CDMA networks. In Section III
we recall briefly the decentralized admission control schemes
for CDMA networks developed in (1], [2]. We make the
connection in question and calculate the blocking probabilities
(rates) in Section TV, Some numerical examples are presented
in Section V. In Appendix we give mathematical foundations
for the general spatial Erlang formula that we use in the paper.

11. RELATED WORK

There is a rich literature on the performance evalnation
of load control schemes in CDMA networks. The distinction
between the following four classes of waffic models allows a
first classification.

e Static models are models with a given number of active
users with fixed position;

o In semi-static models, “snapshots” of active users are
seen as realizations of spatial Poisson processes; these
snapshots are used as the non-constrained traffic process
on which cne can evaluate (in}easibility probabilities.

o in semi-dynamic models, users (or calls) arrive at a
random location and last for some randoim duration; each
user is motionless during its call; this is the “minimal™
dynamic model where an admission control can be speci-
fied, and where blocking probabilities can be considered.

o In dvnamic models, we have the same as above but
cusiomers may move during their calls; an admission
and motion (or handoff) control can then be specified.
Blocking and motion-cut probabilities can be evaluated.

The QoS indicators introduced for semi-static models in [4],
[5], [6], [7] correspond to the probability that the SINR is less
than some threshold, when users, modeled as a spatial Poisson
point process, are all accepied. In [6] and [7] this indicator
is called the outage probability. The authors of [5] call it
the blocking probability, but as mentioned in [6], the term
outage probability is more appropriate, We propose to make
the following distinction between omtage and infeasibility
probabilities, both being defined for a semi-static model: the
former is related to the event that the transmission quality of
service is not attained for given transmission powers, whereas
the latter corresponds to the sitnation when there is no solution
to the power control probiem.

The authors of [6] define the blocking probability in a semi-
dynamic model and give simulation results, which show that
the outage and blocking probabilities are different in general.
In [8] it is argued that “the outage probability may easily
be compuied whereas the blocking probability, even in the
particular case where a product-form is obtained. requires
methods such as Monte-Carlo acceptance-rejection technique
or approximation techniques such as Erlang fixed point.”

In analytical studies of the blocking probabilities in CDMA
networks, the geometry of interferences specific to CDMA
is often absent or seriously reduced. These studies make the
distinction between blocking of new calls and of handoff
calls. Examples of such studies are [9], [10]. which consider
a single celi and [11], [12], which consider a multi-cell
scenario, In [9], [10], blocking probabilities are calculated
via the classical Erlang formula. In [11], Erlang fixed point
approximations are used to calculate blocking probabilities.
In [12] explicit expressions of blecking probabilities are given
for two limiting regimes of the dynamic model: no mobility
and infinite mobility.

As already mentioned, the references [1], [2], take into
account the geometry of interference and they evaluate the
Jfeasibilirv probabilities in a semi-static model within this
setting.

1I1. DECENTRALIZED UP AND DOWNLINK ADMISSION
CONTROL IN LARGE CDMA NETWORKS

In this section we recall briefly the decentralized admission
control schemes for CDMA networks developed in [1], [2].

A. Notation

We will use the following notation:

1) Antenna locations and path loss:

e {¥Y*}, denotes the locations of BS’s; Y* denotes the
location of the BS with index w;

o S, is set of mobiles served by BS u;

o {X¥}m, with m € S,, denotes the locations of the
mobiles served by BS «;

o L{y,z) is the path-loss of signal on the path y — z;

o I = L(Y",X%) is the path-loss on the downlink
Y* — X:,’f“

o b = L(X%,Y")is the path-loss on the uplink X}, —
e

2) Engineering parameters;
o o, denotes the downlink (DL) orthogonality factor in BS
fu=w

u; let
Qy
Qyy = R
1 ifu#wv.

o &, is the SINR threshold for user X% £ . &5 ifitis
necessary to distinguish between the downlink (DL) and
the uplink (UL). Moreover, for each SINR £, we define
a modified SINR & by
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« P is the power of the dedicated channel « — m;

s B is the power transmitted by mobile m — w;

+ P denotes the maximal total power of BS u (in the
blocking rate calculation, we use also H to denote the
average maximal power, which w¢ assume not to depend
on the BS index),

o P'* s the total power of the common channels (CCH),

o Pr=puy > Fii is the total power transmitied by
BS u;

o P¥ is the maximal power of mobile m € S, (in the
blocking rate calculation we use also B to denote the
average maximal power that does not depend on the
mobile index);

« N is the external noise; N¥, N are used for the noise at
BS w and at mobile m € S, respecuvely {(in the blocking
rate calculation, we use also N;, N} to denote the average
external noise at the BS and mobile, respectively; we
assume that these guantities do not depend on the index).

B. Power Control with Power Constraints

We now recall the power control problems with power con-
straints, so called feasibility problems. (We use equivalently
power control and power allocation.)

1} Downlink: We will say that the (downlink) power
allocation with power limitations is feasible if there exist
nonnegative and finite powers F, ;. , for all base stations « and
all mobiles m, which satisfy the following two conditions:

DL1) signal to interference and noise ratio at each mobile is
larger than the threshold £ »

Ao/ U -
]\Iu +Z auv{P +ans }Dln)/llm - lm

for all v and m € 5,;
DL2) the total power transmitied by each base station is not
larger than its given limit 3 .5 Hiﬁ—P'“ < P¥, for
all u.
We will say that the (downlink) power allocation (without
power limitations} is feasible if there exist nonnegative powers
F} such that condition DL1 is satisfied.

2} Uplink: We will say that the (uplink) power control with
power constraints is feasible if there exist finite nonnegative
powers Fi . such that the following two conditions are satis-
fied:

UL1) signal to interference and noise ratio at each BS is larger
than the threshold &, ie

P /b m
NU+ 3, 2ones, Fnlhn

for all u,m € S,.
UL2) the power transmitted by each mobile is not larger than
its given limit 57 < Py, for all » and m € S,,.
We will say that the (uplink) power control (without power
constraints) is feasible if there exist nonnegative powers B
such that condition UL1 is satisfied,

o
> e

C. Decentralized Admission Control

Assume the bit rates of all users (or equivalently all 5 ,‘S{:t

parameters) o be specified. The admission coatrol problem
can then be posed as follows: for a given mobile population
{m € 8.}, for all BS u, check whether the (downlink)
power allocation and the (uplink) power confrol with power
constraints {defined in Section III-B} are feasible, We now
recall the decentralized sufficient conditions for feasibility

" developed in [1], [2].

1) Downlink: For user m € S, define its downlink-power-
control load with respect to BS u by

u qu [lmglu
i = ( L ) NP
Y m
Consider the two conditions
auv’- u e
> Tj”"gl—) <1 (33)
meS, v b
and )
12
M s <1 (34)

pu
mes,, F

Note that (3.3) is equivalent to (3.4) with P* = P
Consider the following algorithms,

2) (Extended) Downlink Admission Control Protocol ((E-)
DACP); Each BS checks periodically whether condition (3.3)
{or (3.4)} is satisfied and, if not, enforces it by reducing the
population {m : m € 8.} of its mobiles to some subsei
s.1. the inequality holds with the reduced population. When
a new mobile user applies to some BS, the BS accepts it if the
corresponding condition is satisfied with this additional user
and rejects it otherwise.

1t is shown in [2] that the application of DACP by all the
BS’s guarantees the global feasibility of the dowalink power
control problem DL1 without power constraints, whereas E-
DACP guarantees in addition that the solution of the power al-
location problem satisfies the maximal-power constrainis DL2.
Moreover, it was shown in [1] that under DACP, F, =
pr ﬁ“m, m & §,, provides a finite solution to problem DL.L.

3) Uplink: Yor user m € 5, define its uplink-power-control
load with respect to BS v as

UL
fiee = S (35
z m
and its aggregated uplink-power-control load as
fT;‘n:ZfT:‘:. (3.6)
L
Consider the following conditions
S A<, 3.7
mEeS,
and
> fim <0, (3.8)
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where

gf'u z U
6, =1—N% sup Jml ™. (3.9)
nee P

The sup in (3.8) is taken over ¢lf possible locations for user
m & S, served by BS Y. Consider the following algorithms,

4) (Simplified Extended) Uplink Admission Confrol Pro-
tocol ((SE-)UACP): Each BS checks periodically whether
condition (3.7) (or (3.8)} is satisfied and, if not, enforces it by
reducing the population {m : m € Sy} of its mobiles to some
subset s.t. the inequality holds with the reduced population.
When a new user applies 1o some BS, the BS accep!s it if the
condition s satisfied with this additional user and rejects it
otherwise.

It ts shown in [2] that the application of the UACP by
all BS’s guarantees the global feasibility of the uplink power
control problem UL1 without power constraints, whereas the
application of SE-UACP by all the BS’s ensures the global
feasibility of the uplink power control problem UL1 with
power constraints UL2,

These schemes are said to be decentralized in that each
base station decides on admission based on the location of the
mobiles in its cell and the location of other base stations but
not on the location of mobiles outside its own cell.

IV. BLOCKING RATES IN DECENTRALIZED ADMISSION
CONTROL

The decentralized admission control schemes of Section ITI-
C prevent certain configurations of users in each cell from
occurring. In order to quantify this phenomenon one can adopt
two approaches, defining two QoS metrics for the schemes.

o A base-station-centric one, called in [2] the Cell Proba-
bility of Rejection (CFPR), and also called here infeasibility
probability. This consists in analyzing how often in
an infinite network of base stations, an unconstrained
(say Poisson) configuration of users cannot be entirely
accepted by a cell due to the admission scheme under
consideration.

A user-centric one, called blocking rate associated with a
given location in the cell, and which can be defined as the
fraction of users arriving {say according to a birth-and-
death process) at this location that cannot be accepted.
The two notions of QoS are closely related. This relation, as
shown in the Appendix VI, is not bound to our particular
admission control schemes, but is of more general nature and
in a simplified scenario can be identified with the well-known
Erlang loss formula. Namely, the complement of the CPR is
the normalizing constant in the blocking rate formula.

In this section we will summarize and apply the results of
the Appendix, in particular Proposition 1.6 and Corollary 1.7
to the CDMA networks operated under the decentralized
admission control schemes of Section ITI-C.

We first consider configurations of users in a typical cell
of # given pattern of base stations. Assuming a simple (un-
constrained) birth-and-death process of arrivals and departures
in this ceil, we estimate the feasibility probability. This can

6l

be further translated into the blocking probability of a typical
user, via Proposition 1.6 and Corollary 1.7.

A. Network Architecture and User Traffic

In order to calculate feasibility and blocking probabilities
we have to fix a network architecture and its parameters, as
well as probabilistic assumptions concerning users.

1) Infinite hexagonal network of BS’s: Denote by Apg the
mean number of BS’s per unit of space. Each BS serves users
in its cell defined as the sel of locations in the plane which
are closer to that BS than to any other BS. It is convenient to
relate Aggs to the radius R of the (virtal) disc whose area is
equal to that of the area of the cell, by the formula

Aps = 1/(7R%).

With this definition in mind, we will sometimes call R the
radius of the cell. In the hexagonal model, the radius R
is related to the distance A between two adjacent BS’s by
A? =27 R*/+/3. The BS’s are located on the grid denoted on
the complex plane by {Y* : ¥* = Afu; + u2e'™3), u =
(ur,up) € {0,£1,...}°}. The cell-pattern in this model
is sometimes called honevcomb. Note that we consider the
honeycomb on the whole plane.
2} Path-loss: We model path-loss on distance r by

Lir)=(Kr)", (4.1)

where 7 > 2 is the so-called path-loss exponent and K > 0
is a multiplicative constant.

3) Free SBD process of calls: Fix one cell of the honey-
comb described above, say that corresponding to BS 0, located
in Y%, for simplicity we will omit the superscript 0 in what
follows, Following the notation introduced in the Appendix,
we denote this cell, considered as a subset of R by D.
We will model the process of call arrivals to and departures
from I as a spatial birth-and-death (SBD) process: for a
given subset A C I}, interarrival times to A are independent
exponential random variables with mean 1/A(A), where A{.)
is some given intensity measure of arrivals to D per unit
of time. This allows the modeling of spatial hot spots. In
homogeneous traffic conditions, we can take A(dz) = Adz,
where A is the mean number of arrivals per unit of area
and per unit of time. We assume that call holding times are
independent exponential random variables with mean 7. This
description corresponds to the SBD process (see example 1.4)
with intensity of arrivals X(-). (v, Agv) = 1 and r(v, Dor) =
1/7 for z € D. Here v is a point measure which characterizes
the configuration of user locations {X,,} in cell D. In what
fpllows, other characteristics of users and BS’s such as powers
P‘; _Q’Pf?lo A, SINR’s gj:t = gf?g{ﬁl = g, njises
N, = N,N N; and orthogonality factors am, = «,
are assumed to be constant for the sake of simplicity. Note
that the SBD process described here models call arrivals and
departures that are subject to no admission control. Thus we
call it the free process of calls.



Denote by M the set of all possible configurations v =
{X.;») of users in cell D, ie. M = {r : X,, € D,m =
1,...,n, for some n > 0} in this free process.

Note that the admission contro! protocols DACP, E-DACP,
UACP, SE-UACP described in Section III-C, applied by the
BS Y°, only allow user configurations v = {X,,} € M that

satisfy condition )
2 fXm) <C
m

for some non-negative function f defined on I and some con-
stant ', Moreover, for each protocol described in Section I1i-
C, the function f is some linear operator of the following
function

(4.2)

that depends only on the geometry of the BS network and
the path-loss model. Adopting point-process notation (see Ap-
pendix A-A.1) we can rewrite condition (4.2) in the following
form

[ flz)v(dz) < C. 4.3)
b
We will denote the set of possible configurations » € M that
satisfy condition (4.3) by M and call it the set of feasible
configurations for the admission control protocol in question,
4) Loss process of calls: Consider now the situation where
the process of arrivals is as above but subject to the admission
controt scheme: from a given configuration, a new call is
accepted if the new configuration still satisfies (4.3) and
rejected otherwise, and where the holding times of accepted
calls are exponential as above. Define the blocking rate by, at a
given point « € D as the fraction of users that are rejected in
the stationary regime of this loss system in some infinitesimal
neighborhood of location z (see Appendix A-B for the precise
definition).

B. Feasibility Probability and Blocking Rates

Denote by IT the distribution of the Poisson point process
on I with mean measure 7A(-). We have the following main
result concerning feasibility probability and blocking rates.

Theorem 4.1: (1) The stationary distribution of the free

SBD process of calls described in Section IV-A3 is II
and so the feasibility probability (i.e. the probability that
the a given realization of the stationary free process of
calls in I satisfies condition {4.3) is given by TT(M).

(i) The blocking rates of the loss process described in
Section IV-A 4 are equal to

{v:C — f(z) < fD

H(M)
The proof of the above result is given in the Appendix
{see Corollary 1.7). It is a special case of a more general result
(see Proposition 1.6) concerning a general SBD process, where
the free process of calls can be dependent in some probabilistic

way on the current state of the system. In this more general
case, the Poisson distribution TE should be replaced by some

b — r(dz) < C} .

44)
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Gibbs distribution based on TI, Moreover, one can consider a
more general form of feasibility condition.

Note that the formula {4.4) has the form of the Erlang loss
formula (1.1). In particular, the feasibility probability TT{M)
is the normalizing constant. The complement of the feasibility
probability was called the cell probability of rejection in [2),

C. Approximations of Blocking Rates

In order to calculate the blocking rates via formula (4.4)
one needs to know the distribution function of

:/Df"(zww

under II. For this, we use the Gaussian approximations de-
veloped in [2]. More precisely, we approximate the sum I by
the Gaussian random variables with mean and variance equal
to those of I under II. The quality of this approximation,
theoretically justified by the Central Limit Theorem, has
already been validated in [2] by comparison with simulations,
in the case of the feasibilily probability TI{M) = II(J < ).
Denote by g and ? , Tespectively, the mean and the variance
of I under I1. Using the same approach we get the following
blocking rate approximations

Q((C - f(=) — w)/o) = QC ~ p)/o)
by =~ , 4.5
- a(C - n/o) 2
where Q(z) = 1/v2r [ e™! */2 4t is the Gaussian tail dis-

tribution funcnon Moreover, for small f
approximation can by justified

z) /o, the following

flz)e—(C—u/(2%)
"wa( ((C u)/a))

For completeness, we recall below the formulas developed
in [2] for x and o2, corresponding to the admission control

protocols DACP, E-DACP, UACP, SE-UACP. They rely on the
following approximation for f{x) proposed in [13]

fa) = L = DL{|=))

o~
~

(4.6}

1 1 4
X + +
(o= * (VAT W))
for |z| < R, where {(s) = 3., 1/n° is the Riemann zeta

function (recali that A is the distance between two adjacent
BS’s in the hexagonal network and R is the radius of the disc
with area equal to that of the cell).

In the following expressions, we use some constants, which
were calculated numenca!ly under the above assumptions:
F~09365/(n—2), g = 1/(1+n/2), F2 ~ 0.2343/(n —
2) + 1.2907/(n — 2)?, F ~ 0.6362/(n — 2). We assume a
homogeneous traffic scenario and in these expressions, M =
TA/{wR?) is the mean number of users of the free process in
the cell.



DACP
c = 1,
o= M'Q’(a+f)=
o? = Mg (e’ +2f+77),
flz) = gla+ fa)).
E-DACP .
C = 1—-5,
R
w = Mg (ot f+LRN/R),
o = Mg’ (N?’L%R)g(zn)/ff L2t T
+2(of + NL(RKag +T/R) ).
fl@) = /B +a+f@).
UACP
c 1,
po= Mg (1+ ),
o = Mg (FP+1+2),
fle) = €U+ f=)
SE-UACP
¢ = 1-NLRYE/A,
u o= MEQL+F),
pe Mg (PP r1+2),
flz) = g+ fla).

V. NUMERICAL RESULTS
In this section we will give a few numerical examples.

A, Model Specification

We will study blocking rates for the different admissions
protocols with different values of the cell radius K and mean
number of customers per cell M. The following values are
fixed for the study.

1) Path Loss: n= 3.38, K = 8667,

2) Physical laver parameters: =04, § = —16dB, & =
—18dB, N; = —105dBm, N] = —103dBm (exiernal noise at
the BS and user, respectively), F| = 52dBm, 4 = 33dBm
(maximal powers of BS and mobile, respectively, including
antenna gains and losses), P’ = 42.73dBm. The above vatues
correspond to the UMTS specification [14].

In what follows we will study the infeasibility probability
P =1II{I < ), the blocking rates b, and the average blocking
rate b defined as follows

f b, dx
lz|<R

1
for the four admission control schemes DACP, UACP E-

tcrE
DACP, SE-UACP. Since our blocking formulas are rotation
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Fig. 2. DACP; Average blocking rate. the blocking rate at cell edge and the
infeasibility probability as functions of the mean number of users A per cell.

invariant, we will slightly abuse the notation writing b, = b,
for {z| = r. Moreover, we will plot b, as the function of the
normalized distance r/A, where A is the distance between

two adjacent BS’s. Note that R = A\/\/é/(Qr) and thus the
value R/A = 0.525 corresponds to the normalized distance
from the cell edge to the BS.

B. No Power Limitation

We first consider schemes which do not take power lim-
itations into account. Then the infeasibility probability P =
P(I < C) and the blocking rates b, = b.{M), b = b(M)
depend on the mean number M of customers per cell and do
not depend on the cell radius R,

1) DACP: Figure 1 shows blocking rates b,(M ) calculated
by the two approximations (4.5) and (4.6), for fixed M =
27, as functions of the normalized distance r/A. Note that
both approximations give similar nurnerical values; however,
their vatues differ more at the cell edge, where the difference
attains about 30%. The blocking rate b, increases with the
distance r of the user to its base station and at the cell edge
r/A = (525, it is about 10 times bigger than at the cell
center. Figure 2 shows the average blocking rate b (A1), the
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infeasibility probability as functions of the mean number of users M per cell.

blocking rate at cell edge by (M), both calculated via (4.5),
and the infeasibility probability P (M) as functions of the
-mean number M of users per cell.

2) UACP: Figure 3 shows the blocking rates b, (M) calcu-
lated by the two approximations (4.5) and (4.6), as functions of
the normalized distance r/A for fixed M = 27. Again, both
approximations give similar numerical values. The blocking
rate b, increases with the distance » of the user to its base
station and at the cell edge R/A = 0.525, it is about 4
times bigger that at the cell center. Figure 4 shows the average
blocking rate b{M), the blocking rate at cell edge bg (M),
both calculated via (4.5), and the infeasibility probability
P (M) as functions of the mean number M of users per cell.

C. With Power Limitation

We will now take into account the maximal power limita-
tion. In this case, the infeasibility probability P = P(M, R)
and blocking rates b, = b,.(M, R),b = b{M, R) depend on
the cell radius R too. '

1) E-DACP: Figure 5 shows the average blocking rate
b{M,R), the blocking rate at cell edge bg (M,z), both
calculated via (4.5), and the infeasibility probability P (M, R)
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Fig. 5. E-DACP; from bottom to top: average blocking rate, the blocking
rate af cell edge and the infeasibility probahility as functions of the mean
number of users A per cell for R =1,3,5 km.
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Fig. 6. SE-UACP; from bottom to top: average blocking rate, the blocking
rate at cell edge and the infeasibility probability as functions of the mean
number of users M per cell for R = 1,3,5 km.

as functions of M for R = 1,3,5km. Note that b (M, R) is
about one third of bg (M, R).

2) SE-UACP: Figure 6 shows the average blocking rate
b (M. R), the blocking rate at cell edge bgr (M,z) both
calculated via (4.5),-and the infeasibility probability P 8M, R)
as functions of M for R = 1,3,5km. Results are similar to
those for the downlink.

Nolte that in all the above cases, the infeasibility probability
is in general different from blocking rates.

VI. CONCLUDING REMARKS

We have given an analytic expression for the blocking
probability in CDMA networks in function of the cell radius,
the antenna type, channel throughput {or equivatently SINR
threshold), and offered traffic. We have also shown that
this notion is closely related to the infeasibility probability
introduced in earlier papers. The infeasibility probability is
easy to calculate theoretically, but it cannot be easily measured
in an existing network, whereas the blocking probability may
easily be measured in the field. The relationship between these



two notions thus makes it possible to start some statistical vali-
dations of the closed form expressions that have been obtained
for both of them. Orange already implemented our analyiical
expression for the blocking probability in its dimensioning
tools,

For simplicity we have assumed that the SINR required
by all users were all the same. However our approach casily
extends to multiclass SBD processes. It could also be extended
to hexagonal networks with directional antennas and sectoring.
Joint feasibility (and blocking) on the uplink and the downlink
can also be treated in the same manner. Other useful extensions
would concern macrodiversity and random fading.

In this paper, we considered the semi-dynamic model with
no user mobility. Tn principle we could use the idea on the
truncation of a general spatial queueing process introduced
in [15]), to study the model with user mobility. However, the
truncated Markov model is not very realistic in this context
as users that are denied service in a new location leave the
system rather than stay blocked in the previous location. We
will analyze motion-cut probabilities in a separate study.
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APPENDIX: MATHEMATICAL BACKGROUND

In this section we develop mathematical tools for the spatio-
temporal analysis of large networks with blocking. The context
is more general than the CDMA setting described in this paper.
In particuiar we will introduce notation and general notions of
infeasibility and blocking rates.

A. Preliminaries

1) Point process: Very much as in [16], we will consider
a system in which units take place in a complete, separable
metric space I», where they are processed. Typically B would
be a bounded subset of the plane R2. If IV is a finite set of
points, the system is a discrete network. In the general case,
we will represent the state of the system by a finite counting
measure v on D. Suppose that =1, ...,z € D are the locations
of units (or points). These units can be described by a counting
measure v on R? defined by

E
H(A) =3 eu,(4)
i=1

for A € &, where £, is a Dirac measure with unit mass at
x, ie £4(A) =1 if £ € A and 0 otherwise, As a simple
consequence of this notation we have for a given real valued
function f on R%: f f(z)v(dz) = Zf:I flzi),

A random configuration N of units at a given time, will
be modeled by a peint process that is a measurable mapping
from some given probability space to the state space M of
all finite counting measures on I (wiih the smallest o-algebra
M making the mappings M 3 v — »(B) for all B € &
measurable).
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The mean measure A(-) of the point process NV is defined as
AB) = E|N(B)], B € &; it represents the expecied numbers
of units present in subsets of D,

Here are two examples of point processes,

Example 1.1: The most prominent point processes are Pois-
son processes defined as follows: /N is Poisson with mean
measure A if for each A C D the random variable N({A) is
Poisson with mean A(A) and for all mutually disjoint 4; C D
the random variables N{A4;),..., N(Ay) are independeni.

Example 1.2; Another important class of distributions of
point process is that of Gibbs processes. For a given non-
negative function £ : M — R, (R, denoies the set of non-
negative real numbers) and a mean measure A on D, the Gibbs
distribution on M, with energy finction £ and Poisson weight
process N of mean measure A, is the distribution 1 on M
defined by

() = Z'E[L(N € T)E(N)],

where Z = E[£(N)] is the normalizing constant called also
partition function or statistical swm. The energy function can
often be expressed as follows

(D)

—log(£(v)) = Z E(xg, Ef:_ll €a,) s
k=1

where v = V@ ¢,
Junction,

2) Measure-valued stochastic processes: We will model the
temporal evolution of the system of units by a Markov jump
process {N;; ¢ > 0} taking values in the state space M of all
finite counting measures on D, The process {NV,; ¢ = 0} is

completely defined by its generator
Glv, ') = E\%t“lP(Nt el\{v}No=v), veM,TeM.

and where £ is called the local energy

We will always assume that {N;; ¢ > 0} is ergodic and will
denote by IT its limiting distribution satisfying

lim sup |P{N, eT)-TI{T)| =0.

t—roo rem
It is also an invariant measure in the sense that it satisfies the
following glebal balance equation

4, M)T1(v) = [M (s, dv) I1(d)

Fix a subset M C M of the state space. Let {N; ¢ > 0}
be a Markov process on M with transition kernel g{v,[') =
g{v, T NM). The restricted process {N,; t > 0} associated 10
g might be seen as evolving in the same way as {N;; t > 0}
with the exception that all the transitions from a state » € M to
a state ¢ € M\M are “blocked”, which means that the process
remains in the state v and continues its evolution driven by q.
In what follows, we will assume that the restricted process is
also ergodic and has for limiting distribution I1 the truncation
of T1 to M. This truncation property does not always hold,
and one simple sufficient condition for it to hold is as follows
(cf Proposition 3.14 in [16]):



Lemma 1.3: The stationary distribution I1 of the restricted
process {Ny; ¢ > 0} is given by

() = —_—Hg(rjm?ﬁ)

if and only if IT satisfies the following balance equation
o, FON@) = [ o) T, v .
S

This wuncation property holds in particular if {N;: ¢ > 0} is
reversible on M or M\ I with respect to II, meaning that ¢
satisfies the following detailed balance equation

q(v, dp)Tl{dv) = g(p, dv)TT(dp)

for, either v, u € M or v, i € M\M.

Here is an example of measure valued stochastic process
that we will work with.

Example 1.4: A spatial birth-and-death process (SBD) is
a Markov measure-valued process on M, which changes at
isolated instants-of time by either the birth of a new point =
that is added to the pattern v, or by the death of a point y that
is deleted form v, More precisely, define the generator of the
SBD as follows

g, I = /Dr(u,AyV)l(AyVEF))\(dy) (A1)

+] r(v, Dev)1(Dyr € T) v(dx),
D

where
e A(A) (A C D)is a finite measure on the state space D
that is supposed to describe the intensity of the arrivals
to the network in the absence of restriction.
o Ay, D, (z,y € D) are, respectively, birth and death
operators on the space M: for veM,z,y e D

Ay =
Dy =

v+ ey,

v—E,

defined only if »({x}} > 1.

o 71, p) < 0o (v € M) is a birth-death rate; it is supposed
to describe the rate at which a single unit is “attracted”
by configuration v to take location y or “repulsed” form
its location z in this configuration, with the repulsion
and the attraction possibly being dependent on the entire
configuration v. We implicitly assume that r{v, ) = 0
unless pu = Ayv or g = Dy,

We call »(r, Azr)A(dz) the intensity of births and r{v, D)
the intensity of deaths. Under suitable conditions the $BD pro-
cess is non-explosive, ergodic and converges to the equilibrium
distribution. For our purpose it suffices to assume that

sup/r(r/, Av] Aldz) < oo, (A.2)
o]

veM
in order to guarantee that the SBD progess is non-explosive
(see Th. 5.1 in [17}). If moreover

inf (1. D) >0,

A
o#veEM,zeD ( 3)

where o denotes the null measure, then the SBD process is
ergodic (see see Th. 7.1 in [17]). If in addition the following
condition is satisfied
r(v, Aep)r(Aer, Ay Agr) v, Ayrir(Ayy, Ap Ay v)
r{Ae Ay, Ayrir(Ayv, v) N r{ Ay ey, App)r(Azv,v)’
(A4

_ )
for all z,y € ¥ and v € M, then the SBD process is reversible
and its equilibrium distribution T1 is the Gibbs distribution with
local energy

B r{v, Apv)
5(3), U) = —1ll(m) o
based on the Poisson weight process with mean measure A(-).
See (18], [19].

B. Feasibility and Blocking Rates for SBD Processes, Spatial
Erlang Formula

Consider an ergodic SBD process {Ne; ¢ > 0} on M with
stationary distribution IT. Consider its restriction {N,; ¢ > 0}
to the state space M and assume that is also stationary, ergodic
and with invariam distribution the truncation of IL: Ti(:) =
IT(- nM)/TI(M). We call TI{M) the feasibility probability.

For a given set B € D, denote by 75 the following ergodic
frequency of births of the process {N;; ¢ > 0} in B, ie. the
a.s. limit

1
=1 - V =
5 = lim = O}q(: tl(J\s A,N,_,y € B).

Similarly, denote by 7p the ergodic frequency of births of the
process {N,; ¢ = 0} in B,
Lemma 1.5: We have

fB E" (N, A, N}] Ady)

TR =

E™[r{N, A,N)1(A,N € M) A(dy) .

B Lo : . I
Progf: By ergodicity, since [1 is the stationary distribu-
tion of {N; t = 0}

TB—EH[Z I(st-’q'yNS—’yEB) ’

0<s=1

g =

By Lévy’s formula (sec e.g. Corollary 7.5.3, p. 232 in [20]
whose proof can be extended 1o our measure valued process)

m:LWMM&MHML

which completes the proof for the first equality. The same line
of thought shows the second equality. |

We define the gcceprance ratio ap associated with the set
B as the ratio 75 /7p. By Lemma 1.5, 7 and Tg can be seen
as measures on I and 7 is absolutely continuous with respect
to 7. We will define the acceptance rate a, for the births at
y by the Radon-Nikedym derivative

dr
ay = a"_; y) -



Proposition 1.6: We have

Ef [r(N, A, NN € M)1(A,N e M)]

ay = =
ET [T(N, AyN)] (N € M)

Proof: By Lemma 1.5

_ EMp(V, A, N)1(A,N € M)]

B ET[y(N, A,N)| '

By the truncation property (see Lemma 1.3)

ET[+(N, A, N)1(A,N € M)]
EN (N, A,N)1(N € M)1(A,N € M)]
TI(N € M)

Ay

bl

which completes the proof.

We now conclude by showing that that the free process
and the loss process of Theorem 4.1 fall within the above
framework.

Corollary 1.7: If r(v, Agr) = ¥ and r{ A, v) = 1/7 then
the free process is reversible and I is the Poisson distribution
with mean measure 7A. Its restriction to the set M of Theorem
4.1 is ergodic. We have the following spatial version of the
Erlang formula:

(N € M, A,N ¢ M)
(N € M) :

where b, is the rejection or blocking rate.

The fact that the restricted process is is ergodic follows
from the fact that it is a SBI> process. which satisfies condi-
tions (A.2)-(A.3) with M replaced by M,

Note that the feasibility probability is the normalizing
constant in the spatial Erlang formula,

by =1—ay =
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