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Abstract- This paper builds upon the scalable admission 
control schemes for CDMA networks developed in [l], [Z]. These 
schemes are based on a n  exact representation of the geometry 
of both the downlink and the uplink channels and ensure that 
the associated power allocation problems have solutions under 
constraints on the maximal power of each stationher. These 
schemes are decentralized in that they can be implemented in 
such a way that each base station only has to consider the 
load brought by its own users to decide on admission. By load 
we mean here some function of the configuration of the users 
and of their bit rates that is described in the paper. When 
implemented in each base station, such schemes ensure the global 
feasibility of the power allocation even in a very large (infinite 
number of cells) network. The estimation of the capacity of large 
CDMA networks controlled by such schemes was made in these 
references, In certain cases, for example for a Poisson pattern of 
mobiles in an hexagonal network of base stations, this approach 
gives explicit formulas for the infeasibility probability, defined 
as the fraction of cells where the population of users cannot be 
entirely admitted by the base station. In the present paper we 
show that khe notion of infeasibility probability is closely related 
to the notion of blocking probability, defined as the fraction of 
users that are rejected by the admission control policy in the 
long run, a notion of central practical importance within this 
setting. The relation between these two notions is not bound to 
our particular admission control schemes, but is of more general 
nature, and in a simplified scenario it can be identified with the 
well-known Erlang loss formula. We prove this relation using a 
general spatial birth-and-death process, where customer locations 
are represented by a spatial point process that evolves over time 
as users arrive or depart. This allows our model to include the 
exact representation of the geometry of inter-cell and intra-cell 
interferences, which play an essential role in the load indicators 
used in these cellular network admission control schemes. 

I .  INTRODUCTION 

Consider calls arriving to some infinite server queue ac- 
cording to a time Poisson point process with intensity A, 
and suppose each call has an exponential holding time with 
mean T .  It is well known that the number of calls in progress 
observed in the steady state of such a non-constrained model 
is a Poisson random variable A' with mean AT. Consider 
now some positive integer C. We define thefeasibiliv (resp. 
infeasibility) prababiliv for C as P( N 5 C) (resp. (P(N > 
C)). In general, these probabilities have nothing to do with 
the dynamics of the model where calls are rejected when 

their number exceeds C. For the latter we need to describe 
an admission conrrol policy which specifies how the model 
performs when the C limit is reached. The classical loss 
system simply drops the calls that arrive when there are C 
calls already in progress. In this case, we define the blocking 
probabilify as the fraction of calls fhar are dropped in the long 
run by the svste~n. Erlang's formula (see e.g. 131) states h a t  
the blocking probability b is 

So Formula (1.1) shows that in spite of the differences between 
the dynamics of the non-constrained and that of the loss 
system, the blocking probability can be expressed in terms 
of the steady state dislribution of calls in progress of the non- 
constrained system. 

As well known, Erlang published this formula in 1917, 
and since that time, the statistical equilibria of much more 
complicated loss networks have been found to coincide with 
the truncation of the stationary distribution of some non- 
constrained system to some polytope. This lead to the calcu- 
lation of the associated blocking probabilities in explicit form 
for large classes of networks. For an exhaustive survey on loss 
systems, see 131). 

Classical loss models are well adapted to wired communi- 
cation networks, where the spatial component of the model 
is typically represented by some graph of links, and where 
the coexistence of calls on a common link is modeled by 
the occupancy of a discrete number of circuits available 
on this link. In wireless communication, one needs to take 
into account the spatial characteristics of the network in a 
more thorough way because it i s  the relative location of the 
radio channels which determines their joint feasibility. This 
is especially important for Code Division Multiple Access 
(CDMA) and other so called interference limited ssstems. One 
of the additional difficulties then stems from the fact that the 
spatial component of the model is subject to changes due 
to the mobility of users and instantaneous changes of radio 
conditions. 

In CDMA, a given configuration of channels with prede- 

58 0-7803-8968-9/05/$20.00 (C)2005 EEE 

mailto:rd.francetelecom.com
mailto:Bartek.Blaszczyszyn@ens.fr


fined bit-rates is feasible if there exist some vector of emitted 
powers which guarantee that the Signal-to-Int~rference-and- 
Noise-Ratio (SINR) at each receiver exceeds some threshold 
defined by the bit rate of the associated channel. The solution 
to this yotrw allocation problem may also be constrained by 
further limitations on the maximum power of srations/users. 

The main contribution of the paper is the connection that 
is established between the notion of the feasibilty probability 
defined in [l], [2] in connection with the admission control 
schemes alluded to in the abstract, and the notion of blocking 
probabiliQ, defined again as the fraction of users that are 
rejected by h e  admission control policy in its long run. 

The paper is organized as follows. In Section I1 we make 
a short survey of the literature on performance evaluation 
of load control schemes for CDMA networks. In Section I11 
we recall briefly the decenualized admission control schemes 
for CDMA networks developed in [l]. [Z]. We make the 
connection in question and calculate the blocking probabilities 
(rates) in Section IV, Some numerical examples are presented 
i n  Section V. In Appendix we give mathematical foundations 
for the general spatial Erlang formula that we use in the paper. 

11. RELATED WORK 

There is a rich literature on the performance evaluation 
of load control schemes in CDMA networks. The distinction 
between the following four classes of traffic models allows a 
first ciassilication. 

Stulic models are models with a given number of active 
users with fixed position; 
In semi-static models. “snapshots” of active users are 
seen as realizations of spatial Poisson processes; these 
snapshots are used as the non-constrained traffic process 
OR which one can evaluate (in)feasibility probabilities. 
in senai-&zamic models, users (or calls) arrive at a 
random location and last for some random duration; each 
user is motionless during its call; this is the “minimal” 
dynamic model where an admission control can be speci- 
fied, and where blocking probabilities can be considered. 
In dvaamic models, we have the same as above but 
cusromers may move during their calls: an admission 
and motion (or handof0 control cltn hen  be specified. 
Blocking and motion-cut probabilities can be evaluated. 

The QoS indicators introduced for semi-static models in [4], 
[SI, [61, 171 correspond to h e  probability that the SINR is less 
than some threshold, when users, modeled as a spatial Poisson 
point process, are all accepted. In [6] and [7] this indicator 
is called the outage probabilil?,. The auchors of 1.51 call it 
the blocking probability, but as mentioned in  [6], the term 
outage probability is more appropriate. We propose to make 
the following distinction between outage and infeasihili1v 
probabilities, both being defined for a semi-static model: the 
former is related CO the event that the transmission quality of 
service is not attained for given transmission powers, whereas 
the latter corresponds to the situation when there is no solution 
to rhe power conlrol pwblew. 

The authors of [6] define the blacking probabiliv in  a semi- 
dynamic model and give simulation results, which show that 
the outage and blocking probabilities are different in general. 
In [ B ]  it is argued that “the outage probability may easily 
be computed whereas the blocking probability, even in the 
particular case where a product-form is obtained. requires 
methods such as Monte-Carlo acceptance-rejection technique 
or approximation techniques such as Brlang fixed point.” 

In analytical studies of the blocking probabilities in CDMA 
networks, h e  geometry of interferences specific to CDMA 
is often absent or seriously reduced. These studies make the 
distinction between blocking of new calls and of handoff 
calls. Examples of such studies are [91, [lo], which consider 
a single cell and 1111, 1121. which consider a multi-cell 
scenario. In [SI, [ 101. blocking probabilities are calculated 
via the classical Erlang formula. In [11], Erlang fixed point 
approximations are used to calculate blocking probabilities. 
In [I21 explicit expressions of blocking probabilities are given 
for two limiting regimes of the dynamic model: no mobility 
and infinite mobility. 

As already mentioned, the references [ l ] ,  [2], take into 
account the geometry of interference and they evaluate the 
feasibilio probabilities in a semi-static model within this 
setting. 

111. DECENTRALIZED UP AND DOWNLINK ADMISSION 
CONTROL IN LARGE CDMA NETWORKS 

In this section we recall briefly the decentralized admission 
control schemes for CDMA networks developed in [ll, [21. 

A. Notation 
We will use the following notation: 
I )  Antenna locations and path loss: 
{k-”}, denotes the locations of BS’s; Y” denotes the 
location of the BS with index U ;  

S, is set of mobiles served by BS U ;  

{ X z } m ,  with m E S,, denotes the locarions of the 
mobiles served by BS U ;  

L ( y , z )  is the path-loss of signal on the path y - a; 
El,, = L ( Y “ , X g )  is the path-loss on the downlink 

l7: = L(X;,  U”) is the path-loss on the uplink Xz 3 

I-. 
2 )  Engin cering parameters: 

au denotes the downlink (DL) orthogonality factor in BS 
a;  let 

U 

Y” - x;; 

6; is the SINR threshold for user X:; [J:. if it is 
necessary to distinguish between the downlink (DL) and 
h e  uplink (UL). Moreover, for each SINR 6 .  we define 
a mod@ed SINR E’ by 
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4;) is the power of the dedicated channel U - m; 
p t z ,  is the power transmitted by mobile ni 4 U ;  

FIL denotes the maximal total power of BS U (in the 
blocking rate calculation. we use also 4 to denote the 
average maximal power, which we assume not to depend 
on the BS index), 
P'" is the total power of the common channels (CCHI, 
P" = Pfu + E,, a:, is the total power transmitted by 
BS U ;  
p z  is the maximal power of mobile 17% f Su (in the 
blocking rate calculation we use also 4 to denote the 
average maximal power that does not depend on the 
mobile index); 
N is the external noise; N", iV; are used for the noise at 
BS U and at mobile m f S,, respectively {in the blocking 
rate calculation, we use also 4. NI to denote the average 
external noise at the BS and mobile, respectively; we 
assume that these quantities do not depend on the index). 

DLI) 

DL2) 

3. Power Control with Power Constraints 

We now recall the power control problems with power con- 
straints, so called feasibilio problems. (We use equivalently 
power control and power alloCUt1On.) 

1)  Downlink: We will say that rhe (downlink) power 
allocation wirh power limitations is feasible if there exist 
nonnegative and finite powers 4:. for all base stations U. and 
all mobiles m, which satisfy the following two conditions: 

signal to interference and noise ratio at each mobile is 
larger than the threshold &:, i.e. 

C. Decentralized Admission Coniio1 

f'{:% 
parameters) to be specified. The admission control problem 
can then be posed as follows: for a given mobile population 
( m  E S,}? for all BS U .  check whether the (downlink) 
power allocation and the (uplink) power control with power 
constraints (defined in Section 111-B) are feasible. We now 
recall the decentralized sufficient conditions for feasibility 
developed in [ll, [Zl. 

1) Downlink: For user UT E S;, define its downlink-power- 
control Eoad with respect to BS U by 

Assume the bit rates of all users (or equivalently all 

Consider the two conditions 

(3.3) 
mES, 21 "I m 

and 
P ' U  

fi:,<1---. (3.4) P mfS, 

Note that 13.3) is equivalent to (3.4) with I?v = Pu = ca. 
Consider the following algorithms, 

2)  (Extended) Downlink Admission Control Protocol ((E-) 
DACP): Each BS checks periodic all^ whether condition (3.3) 
(or (3.4)) is satis$ed and, if not, enforces it b! reducing the 
population {m : m E Su} of its mobiles to some subset 
~ . t  rhe ineqiraliQ holds with the reduced population. When 
a new mobile user applies to mine LIS, the BS accepts il if the 
corresponding condition is satisBed with this additional itser 
and reiecrs it otherwise. 

v 2 cl:, 9;i l t :  
Ark + c, %dp'u + CnfS, qWLm 

for all U and m E S,; 
the total power transmitted by each base station is not 
larger than its given limit CmEs,, f iz  +p'" 5 e, for 
all U. 

It is-shown in 121 that the application of DACP by all the 
BS's guarantees the global feasibility of the downlink power 
control problem DLl without power constraints. whereas E- 
DACP guarantees in addition that the solution of the power d- 

we will say that the (downlink) power allocatjon (without 
power limitations) is feasible if there exist nonnegative powers 
4; such that condition DLl is satisfied. 

2) UplinX-: We will say that the (uplink) power control with 
power constraints is feasible if there exist finite nonnegative 

location problem satisfies the maximal-power constraints DL2. 
Moreover, it was shown in [ I ]  that under DAcp, 6; = 
Wi:, m E S,, provides a finite solution to problem DL1. 

S i  Uplink: For user m E S, define its ciplink-power-control 
load with respect to BS 21 as 

powers e:, such that the following two conditions are satis- .P 1.u 
fied: 

UL1) 

UL2) 

(3.5) Y m L l  ni ... 
4:; = 7 4 m signal to interference and noise ratio at each BS is larger 

than the threshold cl:. i.e. and its aggregated upli~k-power-control load as 

the power transmitted by each mobile is not larger than 
its given limit 4; 2 f':, for all U and m E S,. 

We will say that the (uplink) power control (without ponw 
constraints) is feasible if there exist nonnegative powers 4; 

and 
f r :<e , ,  (3.8) 

such that condition UL1 is satisfied. nz t S, 
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where 

(3.9) 
E;;lf; 8, = 1 - N U  sup - ; 

all pcmhlc P; 
m € S ,  

The sup in (3.8) is taken over ullyossible locations for user 
ni E S, served by BS Y”. Consider the following algorilhms. 

41 (Simplcped Extended) U p l i d  Admission Control Pro- 
tocol ((SE-) UACP): Each BS checks periodic all^ whetlier 
candirion (3.7) (or (3.8)) is  safisfied and, i fnof ,  enforces it by 
rrdiicing rhe population {ni ~ m E SUI of its wiobiles to same 
srrbser s.1. the inequality holds with the redirced popitlalion. 
When a new iiser applies to some BS, the BS accepts it iffhe 
condition is satisjed witli this additional user atld rejects it 
ofherwise. 

It is shown in [2] that the application of the UACP by 
dl BS’s guarantees the global feasibility of the uplink power 
control problem UL1 without powcr constraints, whereas the 
application of SE-UACP by all the BS’s ensures the global 
feasibility of the uplink power control problem UL1 with 
power constraints UL2. 

These schemes are said to be decentralized in that each 
base station decides on admission based on the location of the 
mobiles in its cell and the location of other base stations but 
not on the location of mobiles outside its own cell. 

Iv. BLOCKING RATES IN DECENTRALIZED ADMISSION 
COXTROL 

The decentralized admission control schemes of Section TII- 
C prevent certain configurations of users in each cell from 
occurring. In order to quantify this phenomenon one can adopt 
two approaches, defining two QoS metrics for the schemes. 

A base-station-centric one, called in [2] the Cell Proba- 
bility of Rejection (CPR), and also called here infeusibili9 
probabilily. This consists in analyzing how often in 
an infinite network of base stations, an unconstrained 
(say Poisson) configuration of users cannot be entirely 
accepted by a cell due to the admission scheme under 
consideration. 
A user-centric one, called blocking rale associated with a 
given location in the cell, and which can be defined as the 
fraction of users arriving (say according to a birth-and- 
death process) at this location that cannot be accepted. 

The two notions of QoS are closely related. This relation, as 
shown in the Appendix VI, is not bound to ow particular 
admission control schemes, but is of more general nature and 
in a simplified scenario can be identified with the weI1-known 
Erlang loss formula. Namely, the complement of the CPR is 
the normalizing constant in the blocking rate formula. 

In this section we will summarize and apply the results of 
the Appendix, in particular Proposition 1.6 and Corollary 1.7 
to the CDMA networks operated under the decentralized 
admission control schemes of Section 111-C. 

We first consider configurations of users in a typical cell 
of a given pattern of base stations. Assuming a simple (un- 
constrained) birth-and-death process of arrivals and departures 
in this cell, we estimate the feasibility probability. This can 

be further translated into the blocking probability of a typical 
user, via Proposition 1.6 and Corollary 1.7. 

A. Network ..lrchibecliue ancl User Traffic 

In order to calculate feasibility and blocking probabilities 
we have to fix a network architecture and its parameters. as 
well as probabilistic assumptions concerning users. 

I) IIIJTnite hexagonal network of BS‘s: Denote by ABS the 
mean number of BS’s per unit of space. Each BS serves users 
in its cell defined as the set of locations in the plane which 
are closer to that BS than to any other BS. It is convenient to 
relate ABS to the radius R of the (virtual) disc whose area is 
equal to that of the area of the cell. by the formula 

With this definition in mind. we will sometimes call R the 
mdiirs of the cell. In the hexagonal model, the radius R 
is related to the distance A between two adjacent BS’s by 
A2 = 2 ~ R ’ / f l .  The BS’s are located on the grid denoted on 
the complex plane by {P : 1’” = A(UI U = 
( U I , U ~ ]  E (0, il, . . .)’I. The cell-pattern in this model 
is sometimes called lwnqcotnb. Note that we consider the 
honeycomb on the whole plane. 

21 Purh-loss: We model path-loss on distance r by 

L(r )  = ( K T ) O ,  (4.1) 

where q > 2 is the so-called path-loss exponent and h’ 2 0 
is a multiplicative constant. 

3) Free SBD process of calls: Fix one cell of the honey- 
comb described above, say that corresponding to BS 0, located 
in E’*; for simplicity we will omit the superscript 0 in what 
follows. Following the notation introduced in the Appendix, 
we denote this cell, considered as a subset of B’, by D. 
We will model the process of call arrivals to and departures 
from IID as a spatial birth-and-death (SBD) process: for a 
given subset A c D. interarrival times to A are independent 
exponential random variables with mean l/X(A), where A(.) 
is some given intensity measure of arrivals to D per unit 
of time. This allows the modeling of spatial hot spots. In 
homogeneous traffic conditions, we can take X(dz) = Adz, 
where X is the mean number of arrivals per unit of area 
and per unit of time. We assume that call holding times are 
independent exponential random variables with mean T .  This 
description corresponds to the SBD process (see example 1.4) 
with intensity of arrivals A(.), ~ ( v ,  AV) = 1 and T ( V , D ~ V )  = 
1 / ~  for 2 E D. Here v is a point measure which characterizes 
the configuration of user locations { X m }  in cell D. In what 
follows, other characteristics of users and BS’s such as powers 
P o  q,P,,9 = f i ,  SINR’S $‘% <;.</R <;, noises 
No m = - I, N o  = Nr and orthogonality factors a,, 5 cy, 

are assumed to be constant for the sake of simplicity. Note 
that the SBD process described here models call arrivals and 
departures that are subject to no admission control. Thus we 
call i t  the free process of c d s .  
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Denote by M the set of all possible configurations v = 

{X,,]) of users in cell ID, i.e. M = {v : X,,> E ID, T I L  = 
1 , .  . . , n, for some 12 2 0) in this free process. 

Note that the admission control protocols DACP. E-DACP, 
UACP. SE-UACP described in Section 111-C, applied by the 
BS Yo. only allow user configurations v = (X,,,} E M that 
satisfy condition 

Cf(Xl1 < c (4.2) 
m 

for some non-negative function f defined on D and some con- 
stant C. Moreover, for each protocol described in Section III- 
C. the function f is some linear operator of the following 
function 

that depends only on the geometry of the BS network and 
the path-loss model. Adopting point-process notation (see Ap- 
pendix A-A.1) we can rewrite condition (4.2) in the following 
form 

LicZ, v(d2)  < c .  (4.3) 

We will denote the set of possible configurations v E M that 
satisfy condition (4.3) by fi and call it the set of feasible 
conJigrirarions for the admission control protocol in question, 

4) Loss process of calls: Consider now the situation where 
the process of arrivals is as above but subject to the admission 
control scheme: from a given configuration, a new call is 
accepted if the new configuralion still satisfies (4.3) and 
rejected ohenvise, and where the holding times of accepted 
calls are exponential as above. Define the blocking rare b, at a 
given point 3: E ID as the fraction of users that are rejected in 
the stauonary regime of this loss system in some infinitesimal 
neighborhood of Iocation rc (see Appendix A-B for the precise 
definition). 

B. Feasibilily Probability and Blocking Rates 
Denote by ll the distribution of the Poisson point process 

on ID with mean measure TA( . ) .  We have the following main 
result concerning feasibility probability and blocking rates. 

i'7ieoreni 4.1: (i) The stationary distribution of the €ree 

(ii) 

The 

SBD process of calls described in Section IV-A.3 is I3 
and so the feasibility probability (i.e. the probability that 
the a given realization of the stationary free procsss of 
calls in IID satisfies condition (4.3) is given by ll(M). 
The blocking rates of the loss process described in 
Section IV-A.4 are equal to 

D { v  : C - f(z) 2 S,f(z)v(dz) < C }  
b, = . (4.4) 

proof of the above result is given in the Appendix 
w@ 

(see Corollary 1.7). It is a special case of a more general result 
(see Proposition 1.6) concerning a general SBD process, where 
the free process of calls can be dependent in some probabilistic 
way on the current state of the system. In this more general 
case, the Poisson distribution Il should be replaced by some 

Gibbs distribution based on n. Moreover, one can consider a 
more general form of feasibility condition. 

Note that the formula (4.4) has the form of the Erlang loss 
formula (1.1). In particular, the feasibility probability n (a )  
is the normalizing constant. The complement of the feasibility 
probability was called the cell probabilit? of rejection in [21. 

C. Approximations of Blocking R a m  

one needs to know the dislribution function of 
In order to calculate the blocking rates via formula (4.4) 

I = I j ( z )  v(dz) 

under n. For this, we use the Gaussian approximations de- 
veloped in 121. More precisely, we approximate the sum I by 
the Gaussian random variables with mean and variance equal 
to those of 1 under n. The quality of this approximation, 
theoredcally justified by the Central Limit Theorem, has 
already been validated in [2] by comparison with simulations, 
in the case of the feasibility probability n ( a )  = ll(J 5 C). 
Denote by p and CT*, respectively. the mean and the variance 
of P under n. Using the same approach we get the following 
blocking rate approximations 

&((C - J(5 )  - P ) / U )  - Q ( ( C  - P L ) / ~ )  , 
(4.5) 

1 - Q ( ( C  - P ) / d  

where Q ( z )  = l/v'%Sp" e-"/' dt  is the Gaussian tail dis- 
tribution function. Moreover, for small f(x)/o, the following 
approximation can by justified 

6, M 

f( z)e - (C-fi I2/(2u2) 
b, (4.6) 

a ~ ( 1  - Q((C  - p ) / g ) )  ' 

For completeness, we recall below the formulas developed 
in 121 for p and gz, corresponding to the admission control 
protocols DACF, E-DACP, UACP, SE-UACP. They rely on the 
following approximation for f(x) proposed in [I31 

00 for 1x1 I R, where <(s) = Cn=l l / n S  is the Riemann zeta 
function (recall that A I s  the distance between two adjacent 
BS's in the hexagonal network and R is the radius of the disc 
with area equal to that of the cell). 

In the following expressions. we use some constants, which 
were calculated numerically under the above assumptions: 
f M 0 . 9 3 6 5 / ( ~  - a) ,  g % 1/(1 + q / 2 ) ,  N 0.2343/ (~  - 
3)  + 1.2907/(q - 2 ) 2 ,  N 0.6362/(7 - 2 ) .  We assume a 
homogeneous traffic scenario and in these expressions, = 
T X / ( X R ~ )  is the mean number of users of the free process in 
the cell. 
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Fig. I. DACP; blocking rates b, (A?) calculated via approximations (4.5) 
- I and (4.6) - I1 as functions of the normalizzd distance r / A  for &I = 27. 
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M 

Fig. 2. DACP; Average blocking rate. the blocclung rate at cell edge and the 
rnfeasibility probability as fun&ons of the mean number of users M per cell. 

In this section we will give a few numerical examples. 

A. Model Specifcarion 
We will study blocking rates for the different admissions 

protocols with different values of the cell radius R and mean 
number of customers per cell k. The following values are 
fixed for the study. 

1) Path LOSS: 71 = 3.38, K E 8667. 
2)  Physical laver parameters: a = 0.4, i$ = -16dE4 [T = 

-18dB. NT = -105dBm, n~ = -103dBm (external noise at 
the BS and user, respectively), 8 = 52dBm, 4 = 33dBm 
(maximal powers of I3S and mobile. respectively, including 
antenna gains and losses), P = 42.73dBm. The above vaIues 
correspond to the UMTS specification [141. 

In what follows we will study the infeasibility probability 
P = ll(1 5 C), the blocking rates b, and the average blocking 
rate b defined as follows 

- 1  b =  - 
TR2 l x , 5 R b x d x  

for the four admission control schemes DACP, UACP, E- 
DACP, SE-UACP. Since our blocking formulas are rotation 

invariant, we will slightly abuse the notation writing b, = b, 
for 1x1 = r. Moreover, we will plot b, EIS the function of the 
normalized distance r/A, where A is ............... the distance - . between 
two adjacent BS's. Note that R : Ajv/3/(2.;r) and thus the 
value R / A  x 0.525 corresponds to the normalized distance 
from the cell edge to the BS. 

B. No Power Limitation 
We first consider schemes which do not take power lim- 

itations into account. Then the infeasibility probability P = 
P ( I  I C )  and the blocking rates b, = b , ( M ) ,  6 = 6(B) 
depend on the mean number AT of customers per cell and do 
not depend on the cell radius R. 

I )  DACP: Figure 1 shows blocking rates b,(AT) calculated 
by the two approximations (4.5) and (4.6), for fixed M = 
27, as functions of the normalized distance r / A .  NoEe that 
both approximations give similar numerical values; however, 
their values differ more at the cell edge, where the difference 
attains about 30%. The blocking rate 6, increases with the 
distance r of the user to its base station and at the cell edge 
r / A  x 0.525, it is about 10 times bigger than at the cell 
center. Figure 2 shows the average blocking rate 6 (A?), the 
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Fig. 3. UACP; blochng rates b, (A?) calculated via approximations (4.5) 
- I and (4.6) - I1 as functions of the normalized distance r/A for k = 27. 

rate, probahility 

25 30 35 B 45 50 55 60 
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Fig. 4. UACP; Average blochng rate, the blocking rate at cell edge and the 
infeasibility probability as functions of the mean number of users M per cell. 

blocking rate at cell edge b~ ( M ) ,  both calculated via (4.3, 
and the infeasibility probability P (m) as functions of the 
.mean number 51 of users per cell. 

2) UACP: Figure 3 shows the blocking rates b,.(&!) calcu- 
lated by the two approximations (4.5) and (4.61, as functions of 
the normalized distance r/A for fixed 1'3 = 27. Again, both 
approximations give similar numerical values. The blocking 
rate h, increases with the distance T of the user to its base 
stalion and at the cell edge R / A  = 0.525, it is about 4 
times bigger that at the cell center. Figure 4 shows the average 
blocking rate &(A?), the blocking rate at cell edge bR ( M ) ,  
both calculated via (4.3, and the infeasibility probability 
P (AT) as functions of the mean number n/r of users per cell. 

C. with Power Limitation 
We will now take into account the maximal power limita- 

tion. In this case, the infeasibility probability P = P(A?: R )  
and blocking rates b, = b,(A?f, R ) ,  6 = E ( @ ,  R )  depend on 
the cell radius R too. 

I I  E-DACP: Figure 5 shows the average blocking rate 
6 (i@:R), the blocking rate at cell edge bR (A?>.), both 
calculated via (4.5), and the infeasibility probability P (A?, R)  

rate, probability 

i 0  I 5  20 15 30 35 40 I5 Io 55 

h7 

Fig. 5. E-DACP; from hottom to top: averags bloclung rate, the blocking 
rate at cell edge and the infeasibility probability as functions of the mean 
numher of users AT per cell for R = 1 , 3 , 5  km. 

rate, probability 

0 i o  m ?4 60 P 

KTi 
Fig. 6. SE-UACP; from bottom to lop: average blocking rate. the blocking 
rate at cell edge and the infeasibility probability as functions of the mean 
number of users IIf per cell for R = I ,  3, 6 kni. 

as functions of A? for R = 1,3,5km. Note that 5 (&f, R)  is 
about one third of b~ (A?: R) .  

2) SE-UACP: Figure 6 shows the average blocking rate 
E(M:R),  the blocking rate at cell edge b ~ ( A ? f , z  both 
calculated via (4.5),.and the infeasibility probability P I M ,  R)  
as functions of h? for R = 1,3,5km. Results are similar to 
those for the downlink. 

Note that in all the above cases, the infeasibility probability 
is in general different from blocking rates. 

VI. CONCLUDING REMARKS 

We have given an analytic expression for the blocking 
probability in CDMA networks in function of the cell radius, 
the antenna type, channel throughput (or equivalently SINR 
threshold). and offered traffic. We have also shown that 
this notion is closely related to the infeasibility probability 
introduced in earlier papers. The infeasibility probability is 
easy to calculate theoretically, but it cannot be easily measured 
in an existing network, whereas the blocking probability may 
easily be measured in the field. The relationship between these 
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two notions thus makes it possible to start some statistical vali- 
dations of the closed form expressions that have been obtained 
for both of them. Orange aiready implemenled our analytical 
expression for the blocking probability i n  its dimensioning 
tools. 

For simplicity we have assumed that the SINR required 
by all users were all the same. However our approach easily 
extends to multiclass SBD processes. I t  could also be extended 
to hexagonal networks with directional antennas and sectoring. 
Joint feasibility (and blocking) on the uplink and the downlink 
can also be treated in the same manner. Other useful extensions 
would concern macrodiversity and random fading. 

In this paper. we considered the semi-dynamic model with 
no user mobility. In principle we could use the idea on the 
truncation of a general spatial queueing process introduced 
in [15]. to study the model with user mobility. However, the 
truncated Markov model is not very realistic in this context 
as users that are denied service in a new location leave the 
system rather than stay blocked in the previous location. We 
wiIl analyze motion-cut probabilities in a separate study. 
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APPENDIX: MATHEMATICAL BACKGROUND 

In this section we develop mathematical tools for the spatio- 
temporal analysis of large networks with blocking. The context 
is more general than the CDMA setting described in  this paper. 
In particular we will introduce notation and general notions of 
infeasibility and blocking rates. 

A. Preliminaries 
1) Point process: Very much as in [16], we will consider 

a system in which units take place in a complete, separable 
metric space D, where they are processed. Typically D would 
be a bounded subset of the plane R2. If D is  a finite set of 
points, the system is a discrete network. In the general case, 
we will represent the state of the system by a finite counting 
measure v on D. Suppose that X I ,  , . . , ~k E Dare the locations 
of units (or points). These units can be described by a counting 
measure v on W2 defined by 

i=3 

for A E E, where E ,  is a Dirac measure with unit mass at 
g:, i.e. &,(A)  = 1 if IE E il and 0 otherwise. As a simple 
consequence of this notation we have for a given real valued 
function f on I@: sf(.) vjds)  = 

A random configuration N of units at a given time. will 
be modeled by a poiat process that is a measurable mapping 
from some given probability space to the state space M of 
all finite counting measures on D (with the smallest a-algebra 
M making the mappings M 3 v +- v(B)  for a11 B E E 
measurable). 

~ ( L C ~ ) .  

The iizean rireaswe A(.) of the point process N is defined as 
A(B) = E [ N ( B ) ] ,  E E E; it represents the expected numbers 
of units present in subsets of IID. 

Here are two examples of point processes, 
Emn7ple 1.1: The most prominent point processes are PoiL+ 

son processes defined as follows: N is Poisson with mean 
measure X if for each A c D the random variable N ( A )  is 
Poisson with mean X(A) and for all mutually disjoint A+ c D 
the random variables N j A i ) ,  . . . : AT(&) are independent. 

Exanzpie 1.2; Another important class of distributions of 
point process is that of Gibbs processes. For a given non- 
negative function & : M + R, (a+ denotes the set of non- 
negative real numbers) and a mean measure X on ID? the Gibbs 
dislrihiirion on M1 with enqgyfiinction & and Poisson weight 
process N of mean measure A, is the distribution II on M 
defined by 

n(r) = Z-lE[l(N E r)E(N)], 
where 2 = E [ Z ( N ) ]  is the normalizing constant called also 
partition function or sfatistical siini. The energy function can 
often be expressed as follows 

k= 1 

where v = Er::) and where E is called the local energy 
function. 

2 )  Measure-valued stochastic processes: We will model the 
temporal evolution of the system of units by a Markov jump 
process {Art; t 2 0) taking values in  the state space M of all 
finite counting measures on D. The process {Art; t 2 0) is 
completely defined by its generator 

q(v,rj = lim t - l P ( ~ ~  E r\{v}lNo = v ) ,  Y E M ,  r E M .  

We will always assume that {Art; t 2 0 )  is ergodic and will 
denote by Il its limiting distribution satisfjing 

t v  

It is also an invariant measure in the sense that i t  satisfies the 
following global balance qiiation 

dv, MW(d4 = dPL: dv) WdPu). s, 
Fix a subset 6jI C M of the state space. Let (N; t 2 0) 

be a Markov process on 6!l with transition kernel Q ( v , r )  = 
q(v, r 17 a). The reslricred process {&rt: t 2 0) associated to 
lj might be seen as evolving in the same way as {Art; t 2 0) 
with the exception that all the transitions from a state v E M to 
a state ,U E M\&d are “blocked”, which means that the process 
remains in the state v and continues its evolution driven by q. 
In what follows, we will assume ha t  the restricted process is 
also ergodic and has for limiting distribution fI the truncation 
of II to a. This truncation property does not always hold, 
and one simple sufficient condition for it to hold is as follows 
(cf Proposition 3.14 in 1161): 
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Lewiriia 1.3: The stationary distribution fI of tbe restricted 
process { f i t ;  .t 2 O} is given by 

i f  and only if n satisfies the following balance equation 

dv, & P ( d 4  = d P ,  dv)  W d P ) !  v E MI. 
This truncation property holds in particular if {Art; t. 2 0) is 
reversible on or M \ nTD with respect to n, meaning that q 
satisfies the following detailed balance egrration 

for, either v: p E 19 or v, p E M \ i%. 
Here is an example of measure valued stochastic process 

that we will work with. 
Example 1.4: A spatial birth-and-dearli process (SBD)  i s  

a Markov measure-valued process on M. which changes at 
isolated instants.of time by either the birth of a new point z 
that is added to the pattern v, or by the dearh of a point 9 that 
is deleted form v. More precisely, define the generator of the 
SBD as follows 

T ( V ,  D,v)l(D,v E r) v(dz ) ,  

where 
X(A) ( A  c ID) is a finite measure on the state space ID 
that is supposed to describe the intensity of the arrivals 
to the network in the absence of restriction. 
Ay,VDIF (z,y E D) are, respectively. birth and death 
operators on the space M: for v E M. z, y c ID 

A,v = VtE,, 

Dzv = v - E, defined only if v({x)) 2 1 . 

T(Y, p) < 00 (Y f: M) is a birth-dearh rate: it is supposed 
to describe the rate at which a single unit is "attracted" 
by configuration v to take location .q or "repulsed" form 
its location 5 in this configuration, with the repulsion 
and the attraction possibly being dependent on the entire 
configuration v. We implicitly assume that ~ ( v , p )  = 0 
unless ,u = Ayv or p = DZv.  

We call r (v ,  Arv)X(dz) the intensity of births and T(Y) D,v) 
the intensity of deaths. Under suitable conditions the SBD pro- 
cess is non-explosive, ergodic and converges to the equilibrium 
distribution. For our purpose it suffices to assume that 

sup / T(V,  AV) X(d5) <. ca , (A.2) 

in  order to guarantee that the SBD process is non-explosive 
(see Th. 5.1 in 1173). If moreover 

VEM D 

(A.3) 

where o denotes the null measure, then the SBD process is 
ergodic [see see Th. 7.1 in [171). If in addition the following 
condition is satisfied 

for all z, y E D and v E'M, then the SBD process is reversible 
and its equilibrium distribution ll is the Gibbs distribution with 
local energy 

based on the Poisson weight process with mean measure A(.). 
See [IXIl [191. 

B. Feasibility and Blocking Rates fur- SBD Processes, Spatial 
Erlang Forinicla 

Consider an ergodic SBD process { N t ;  t 2 0) on M with 
stationary distribution n. Consider its restriction { f i t ;  t 2 0 )  
to the state space and assume that is also stationary. ergodic 
and with invariant distribution the truncation of n: a(,) = 
II(. n €h)/n(Fh). We call n(h) thefeasibilify probabilih.. 

For a given set E E ID, denote by TB the following ergodic 
frequency of births of the process {pi; t 2 0) in B. i.e. the 
as. limit 

Similarly, denote by FB the ergodic frequency of births of the 
process { f i t ;  t 2 0) in B. 

Lernvna 1.5: We have 

rB = E"[r (N?ngAr) ]A(dP)  

?B = S, ETi[~(NIA,N)l(A,N E &)I X(dy). 

Proof: By ergodicity, since n is the stationary distribu- 
tion of {Nt;  t 2 0 )  

Q =E"[ l(Ns = & N S - , y  E B) . 
05SSl 1 

By Levy's formula (see e.g. Corollary 7.5.3. p. 232 in 1201 
whose proof can be extended CO our measure valued process) 

TB = E" HN? A," YdY) : 

which completes the proof for the first equality. The same line 
of thought shows the second equality. 

We define the acceptance ratio a~ associated with the set 
B as the ratio ? E / T B .  By Lemma 1.5, TB and ?B can be seen 
as measures on ID and ? is absolutely continuous with respect 
to 7. We will define the acceptance rate a, for the births at 
y by the Radon-Nikodym derivative 

66 



which completes the proof. 
We now conclude by showjng that that the free process 

and the loss process of Theorem 4.1 fall within the above 
framework. 

Curol la~~ 1.7: If T ( V ,  A5v) f 1 and r(AA,v! v )  = 1 / ~  then 
the free process is reversible and II is the Poisson distribution 
with mean measure TA. Its restriction to the set &I of Theorem 
4.1 is ergodic. We have the following spatial version of the 
Erlang formula: 

H(N E F$AYN #a) 
n(hr E fi) by = 1 -ay E 

where b, is the rejection or blocking m e .  
The fact that the restricted process is is ergodic follows 

from the fact that it is a SBD process, which satisfies condi- 
tions (A.Z)-(A.3) with M repIaced by fir. 

Note thar the feasibility probability is the normalizing 
constant in the spatial Erlang formula. 
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