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Abstract—We present a new stochastic service model with ca-
pacity sharing and interruptions, appropriate for the evaluation
of the quality of real-time streaming (e.g. mobile TV) in wireless
cellular networks. It takes into account multi-class Markovian
process of call arrivals (to capture different radio channel
conditions, requested streaming bit-rates and call-durations) and
allows for a general resource allocation policy saying which users
are temporarily denied the requested fixed streaming bit-rates
(put in outage) due to resource constraints. We develop general
expressions for the performance characteristics of this model,
including the mean outage duration and the mean number of
outage incidents for a typical user of a given class, involving
only the steady-state of the traffic demand. We propose also
a natural class of least-effort-served-first resource allocation
policies, which cope with optimality and fairness issues known in
wireless networks, and whose performance metrics can be easily
calculated using Fourier analysis of Poisson variables. Wespecify
and use our model to analyze the quality of real time streaming
in 3GPP Long Term Evolution (LTE) cellular networks. Our
results can be used for the dimensioning of these networks.

Index Terms—Real-time streaming, stochastic model, mobile
TV, LTE, quality of service, interruptions, outage, deep outage,
capacity-sharing, Poisson process.

I. I NTRODUCTION

W IRELESS cellular networks offer nowadays possibility
to watch TV on mobile devices, which is an example

of a real-time content streaming. This type of traffic demand
is expected to increase significantly in the future. In orderto
cope with this process, network operators need to implementin
their dimensioning tools efficient methods allowing to predict
the quality of this type of service. The quality of real-time
streaming (RTS) is principally related to the number and
duration ofoutage incidents— (hopefully short) periods when
the network cannot deliver to a given user in real-time the
requested content of the required quality. In this paper we
propose a stochastic model allowing for an analytic evaluation
of such metrics. It assumes a traffic demand with different
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radio conditions of calls, and can be specified to take into
account the parameters of a given wireless cellular technology.
We develop expressions for several important performance
characteristics of this model, including the mean time spent
in outage and the mean number of outage incidents for a
typical streaming call in function of its radio conditions.These
expressions involve only stationary probabilities of the (free)
traffic demand process, which is a vector of independent
Poisson random variables describing the number of users in
different radio conditions.

We use this model to analyze RTS in a typical cell of
a 3GPP Long Term Evolution (LTE) cellular network as-
suming orthogonal intra-cell user channels with the peak
bit-rates (achievable when there are no other users in the
same cell) close to the theoretical Shannon’s bound in the
additive white Gaussian noise (AWGN) channel, with the
extra-cell interference treated as noise. These assumptions lead
to a radio resource constraint in a multi-rate linear form.
Namely, each user experiencing a given signal-to-(extra-cell)-
interference-and-noise ratio (SINR) requires a fixed fraction of
the normalized radio capacity, related to the ratio betweenits
requested and peak bit-rates. All users of a given configuration
(experiencing different SINR values) can be entirely satisfied
if and only if the total required capacity is not larger than
one.1

In the above context of a multi-rate linear radio resource
constraint, we analyse some natural parametric class ofleast-
effort-served-first(LESF) service policies, which assign ser-
vice to users in order of their increasing radio capacity
demand, until the full capacity (possibly with some margin)
is reached. The capacity margin may be used to offer some
“lower quality” service to users temporarily in outage thus
realizing some type of fairness with respect to unequal user
radio-channel conditions. This class contains an optimal and a
fair policy, the latter being suggested by LTE implementations.

In order to evaluate explicitly the quality of service metrics
induced by the LESF policies we relate the mean time spent in
outage and the mean number of outage incidents for a typical
streaming call in given radio conditions to the distribution

1Recall that in the case of voice calls and, more generally, constant bit-rate
(CBR) calls the multi-rate linear form of the resource constraints has already
proved to lead to efficient model evaluation methods, via e.g. Kaufman-
Roberts algorithm [1, 2]. Despite some fundamental similarities to CBR
service, the RTS gives rise to a new model, due to the fact thatthe service
denials are not definitive for a given call, but have a form of temporal
interruptions (outage) periods.
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functions of some linear functionals of the Poisson vector
describing the steady state of the system. We calculate the
Fourier transforms of these functions and use a well-known
Fourier transform inversion method to obtain numerical values
of the quantities of interest. We also study the mean throughput
during a typical streaming call evaluating the expectations of
the corresponding non-linear functionals of the Poisson vector
describing the steady state of the system via the Monte Carlo
method.

Using this approach, we present a thorough study of
the quality of RTS with LESF policies in the aforemen-
tioned Markovian setting. For completeness we present also
some pure-simulation results illustrating the impact of a non
Poisson-arrival assumption.

Let us now recollect a fewrelated workson the performance
evaluation of cellular networks. In early 80’s, wireless cellular
networks were carrying essentially voice calls, which require
constant bit-rates (CBR) and are subject to admission control
policies with blocking (at the arrival epoch) to guarantee these
rates for calls already in service. An important amount of work
has been done to propose efficient call admission policies [3–
5]. Policies with admission conditions in the multi-rate linear
form have been considered e.g. in [6–8].

Progressively, cellular networks started carrying also calls
with variable bit-rates (VBR), used to transmit data files. The
available resources are (fairly) shared between such callsand
when the traffic demand increases, the file transfer delays in-
crease as well, but (in principle) no call is ever blocked. These
delays may be evaluated analytically using multi-rate linear
resource constraint in conjunction with multi-class processor
sharing models; cf e.g. [8, 9].

Recently, users may access multimedia streaming services
through their mobile devices [10]. They are provided via CBR
connections, essentially without admission control, but they
tolerate temporary interruptions, when network congestions
occur. One may distinguish two types of streaming traffic. In
real-time streaming (RTS)(as e.g. in mobile TV), considered
in this paper, the portions of the streaming content emitted
during the time when the transmission to a given user is
interrupted (is in outage) are definitely lost for him (unless
a “secondary”, lower-rate streaming is provided during these
periods). Innon-real-time streaming (NRTS)(like e.g., video-
on-demand, YouTube, Dailymotion, etc), a user starts playing
back the requested multimedia content after some initial delay,
required to deliver and buffer on the user device some initial
portion of it. If further transmission is interrupted for some
time making the user buffer content drop to zero (buffer
starvation) then the play-back is stopped until some new
required portion of the content is delivered. Several papers
study the effect of the variability of the wireless channel on the
performance of a single streaming call; see for e.g. [11], [12].
In [13] VBR transmissions and RTS are considered jointly in
some analytical model, however the number and duration of
outage periods are not evaluated. In [14] the tradeoff between
the start-up delay and the probability of buffer starvation
is analyzed in a Markovian queuing framework for NRTS
streaming.

We do not consider any cell-load balancing; see [15] for

some recent work on this problem in the video streaming con-
text. Also, [16, 17] consider some admission control policies
to guarantee non-dropping of multimedia calls due to caller
impatience and/or handoffs.

The remaining part of this paperis organized as follows. In
Section II we will present our model for the evaluation of the
quality of RTS in wireless cellular networks. Technical proofs
of the results presented in this section are postponed to the
Appendix, where they are given in a more general context.
Section III specifies our model to be compliant with the LTE
cellular networks specification and presents numerical results
regarding the quality of RTS in these networks.

II. STREAMING IN WIRELESS CELLULAR NETWORKS

In this section we present a new stochastic model of RTS
in cellular networks.

A. System assumptions

We consider the following scenario of multi-user streaming
in a cellular network.

1) Network layer: Geographically distributed users wish
to obtain down-link wireless streaming of some (typically
video) content, contacting base stations of a network at random
times, for random durations, requesting some fixed streaming
bit-rates. We consider a uni-cast traffic (as opposed to the
broadcast or multi-cast case), i.e.; the content is delivered to
all users via private connections. Different classes of users
(calls) need to be distinguished, regarding their radio channel
conditions, requested streaming bit-rates and mean streaming
times. Each user chooses one base station, the one with the
smallest path-loss, independently of the configuration of users
served by this station. Thus, we do not consider any load-
balancing policy.

2) Data layer — streaming policies:If a given base station
cannot serve all the users present at a given time, it temporarily
stops streaming the requested content at the requested rateto
users of some classes, according to some given policy (to be
described), which is supposed to preserve a maximal subset
of served users. We call these (classes of) users with the
requested bit-rate temporarily deniedin outage. The users in
outage will not receive the part of the content which is emitted
during their outage times (this is the principle of the RTS).
We will also consider policies, which offer some “best-effort”
streaming bit-rates for some classes of users in outage, thus
allowing for example to keep receiving the requested content
but of a lower quality. Users, which are (temporarily) denied
even this lower quality of service are calledin deep outage.

3) Medium access :In this paper we assume that users
are connected to the serving antennas via orthogonal single-
input-single-output (SISO) channels allowing for the peak-
rate close to the theoretical Shannon’s bound in the additive
white Gaussian noise (AWGN) model, with the (extra-cell)
interference treated as noise.2 We will also comment on how to
model multiple-input-multiple-output (MIMO) and broadcast
channels.

2Orthogonality of channels is an appropriate assumption forcurrent LTE
(Long Term Evolution) norm for cellular networks based on OFDMA, as well
as for other multiple access techniques as FDA, TDMA, CDMA assuming
perfect in-cell orthogonality, and even HDR neglecting thescheduler gain.



BŁASZCZYSZYN et al.: QUALITY OF REAL-TIME STREAMING IN WIRELESS CELLULAR NETWORKS. . . 3

4) Physical layer: The quality of channel of a given user
depends on the path-loss of the signal with respect to its serv-
ing base station, a constant noise, and the interference from
other (non-serving) base stations. These three componentsde-
termine its signal-to-interference-and-noise ratio (SINR). Both
path-loss form the serving station and interference account
for the distance and random propagation effects (shadowing).
Our main motivation for considering a multi-class model is to
distinguish users with different SINR values. In other words,
even if we assume that all users require the same streaming
times and rates, we still need a multi-class model due to
(typically) different SINR’s values of users in wireless cellular
networks.

5) Performance characteristics:We will present and an-
alytically evaluate performance of some (realistic) streaming
policies in the context described above. We will be particularly
interested in the following characteristics:

• fraction of time spent in outage and in deep outage during
the typical call of a given class,

• number of outage incidents occurring during this call,
• mean throughput (average bit-rate) during such call,

accounting for the requested bit-rates and for the “best-
effort” bit-rate obtained during the outage periods.

B. Model description

In what follows we describe a mathematical model of the
RTS that is an incarnation of a new, more general, stochastic
service model with capacity sharing and interruptions pre-
sented and analyzed in the Appendix A. This is a single server
model which allows to study the performance of one tagged
base station of a multi-cellular network satisfying the above
system assumptions. More details on how this model fits the
multi-cell scenario will be presented in Section III.

1) Traffic demand: Consider J ≥ 1 classes of calls
(or, equivalently, users) characterized by differentrequested
streaming bit-rates rk, wireless channel conditionsde-
scribed by the signal-to-(extra-cell)-interference-and-noise ra-
tio SINRk with respect to the serving base-station3 andmean
requested streaming times1/µk, k = 1, . . . , J .

We assume that calls of classk ∈ {1, . . . , J} arrive in
time according to a Poisson process with intensityλk > 0
(number of call arrivals per unit of time, per base station)
and stay in the system (keep requesting streaming) for inde-
pendent times, having somegeneral distributionwith mean
1/µk < ∞. 4 Different classes of calls are independent from
each other. We denote byXk(t) the number of calls of a
given class requesting streaming from a given BS at time
t; see Section A in the Appendix for a formal definitions
of these variables in terms of arrival process and service
times. LetX(t) = (X1(t), . . . , XJ(t)); we call it the (vector
of) user configuration at timet. The stationary distribution
π of X(t) coincides with the distribution of the vector
(X1, . . . , XJ) of independent Poisson random variables with

3In this paper the interference is always caused only by non-serving base
stations.

4All the results presented in this paper do not depend on the particular
choice of the streaming time distributions. This property is often referred to
in the queuing context as the insensitivity property.

meansE[Xk] := ρk = λk/µk, k = 1, 2, . . . , J . We call ρk
the traffic demand(per base station) of classk.

2) Wireless resource constraints:Users are supposed to be
offered the requested streaming rates for the whole requested
streaming times. However, due to limited wireless resources,
for some configuration of usersX(t), the requested streaming
rates r = (r1, . . . , rJ ) may be not achievable. Following
the assumption of orthogonal AWGN SISO wireless channels
(with the (extra-cell) interference treated as noise) available
for users of a given station, we assume that the requested
rates are achievable for all calls present at timet if

Xk(t)rk = νkr
max
k , k = 1, . . . , J, (1)

for some non-negative vector(ν1, . . . , νJ), such that
∑J

k=1 νk ≤ 1, where

rmax
k = γW log(1 + SINRk) (2)

is the maximal (peak) bit-rate of a user of classk, whose
channel conditions are characterized by SINRk. (The ratermax

k

is available to a user of classk if it is the only user served
by the base station.) HereW is the frequency bandwidth and
γ (with 0 < γ ≤ 1) is a coefficient telling how close a given
coding scheme approaches the theoretical Shannon’s bound
(corresponding toγ = 1); cf [18, Th .9.1.1]. 5 Note that
the assumption (1) corresponds to the situation, when users
neither hamper nor assist each other’s transmission. They use
channels which are perfectly separated in time, frequency or
by orthogonal codes, nevertheless sharing these resources. 6

We can interpret the ratio between the requested and max-
imal bit-ratesϕk = rk/r

max
k as theresource demandof a

user of classk. Note that the configuration of usersX(t) can
be entirely served if and only if the total resource demand
satisfies the constraint

J
∑

k=1

ϕkXk(t) ≤ 1 . (3)

This is amulti-rate linear resource constraint.
3) Service policy:If the requested streaming rates are not

achievable for a given configuration of usersX(t) present at
time t, then some classes of users will be temporarily put in
outage at timet, meaning that they will receive some smaller
bit-rates (whose values are not guaranteed and may depend
on the configurationX(t)). These smaller, “best-effort” bit-
rates may drop to 0, in which case we say that users are in
deep-outage. Let us recall that the times at which users are
in outage and deep outage donot alter the original streaming

5It was also shown in [19] that the performance of AWGNmultiple input
multiple output(MIMO) channel can be approximated by taking values of
γ ≥ 1. Another possibility to consider MIMO channel is to use the exact
capacity formula given in [20].

6From information theory point of view, the orthogonality assumption is
not optimal. In fact, the theoretically optimal performance is offered by the
broadcast channelmodel. It is known that in the case of AWGN broadcast
channel the ratesr are (theoretically) achievable for the configurationX if
(and only if) there exists a vector(ν1, . . . , νJ ), such that

∑J
k=1 νk ≤ 1 and

Xkrk = W log

(

1 +
νk

1/SINRk +
∑k−1

i=1 νi

)

k = 1, . . . , J,

where the classes of users are numbered such that SINR1 ≥ SINR2 ≥ . . . ≥
SINRJ ; cf [21, Eq. 6.29].
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times; i.e. the streaming content is not buffered, nor delayed
during the outage periods.

We will define now a parametric family of service polices
for which classes with smaller resource demands have higher
service priority. In this regard, in the remaining part of the
paper we assume (without loss of generality) that the resource
demands of users from different classes are orderedϕ1 <
ϕ2 < . . . < ϕJ .

a) Least-effort-served-first policy:For a given config-
uration of usersX = X(t) requesting streaming at time
t, least-effort-served-first policy withδ-margin (LESF(δ) for
short) attributes the requested bit-rates to all users in classes
k = 1, . . . ,K, where

K =Kδ(X) = max {k ∈ {1, . . . , J} : (4)

k−1
∑

j=1

ϕjXj + ϕk

J
∑

j=k

Xj1(ϕj ≤ ϕk(1 + δ)) ≤ 1







,

where1A(x) = 1 is the indicator function of setA and δ is
a constant satisfying0 ≤ δ ≤ ∞.

Remark 2.1: The LESF(0) policy is optimal in the follow-
ing sense: given constraint (3) and the assumption that the
classes with smaller resource demands have higher priority,
this policy allows to serve the maximal subset of users present
in the system. For the same reason any LESF(δ) policy
with δ > 0 is clearly sub-optimal. In order to explain the
motivation for considering such policies, one needs to extend
the model and explain what actually happens with classes
of users which experience outage. In this regard, note that
C =

∑K
j=1 ϕjXj ≤ 1 is the actual fraction of the server

capacity consumed by the users which are not in outage. The
remaining server capacity1−C (which is not needed to serve
users in classes1, . . . ,K) can be used to offer some “lower
quality” service (e.g. streaming with lower video resolution,
etc) to the users in classesK +1, . . . , J which are in outage.
Note by (4) that the remaining server capacity under the policy
LESF(δ) is at least

1− C ≥ ϕK

J
∑

j=K+1

Xj1(ϕj ≤ ϕK(1 + δ)) .

Hence, the server accepting the classK as the least-priority
class being “fully” served, leaves enough remaining capacity
to be able to make the same effort (allocate service capacity
ϕK) for all users in outage in classes whose service demand
exceedsϕK by no more thanδ × 100%. These latter users
will not have “full” required service (since this requires more
resources,ϕj > ϕK , for the full service) but only some
“lower quality” service (to be specified in what follows).
Consequently, one can conclude that policies LESF(δ) with
δ > 0, being sub-optimal, ensure somefairness, in the
sense explained above. Clearly the policy LESF(∞) (i.e., with
δ = ∞) is the most fair, in the sense that it reserves enough
remaining capacity to offers the “lower quality” service for all
users in outage (no deep outage). Thus, we will call LESF(∞)
the LESF fair policy.

b) Best-effort service for users in outage:We will spec-
ify now a natural model for the “best-effort” streaming bit-
rates that can be offered for users in outage in association

with a given LESF(δ) policy. Fork > K = Kδ(X) denote

r′k = r
′δ
k (X) = rmax

k

1−∑K
j=1 Xjϕj

∑J
j=K+1 Xj1(ϕj ≤ (1 + δ)ϕK)

(5)

if ϕk ≤ (1 + δ)ϕK and 0 otherwise.

The rates(r1, . . . , rK , r′K+1, . . . , r
′

J) are achievable for the
configurationX under resource constraint (3). Note that users
in classesj such thatϕj > (1 + δ)ϕK do not receive any
positive bit-rate. We say, they are indeep outage. Finally, we
remark that the service (5) is “resource fair” among users in
outage but not in deep outage.

4) Performance metrics:Configuration of usersX(t)
evolves in time, it changes at arrival and departure times of
users. At each arrival or departure epoch the base station
applies the outage policy to the new configuration of users
to decide which classes of users receive requested streaming
rates and which are in outage (or deep outage).

Let us introduce the following characteristics of thetypical
call (user)of classk = 1, . . . , J .

• Pk denotes theprobability of outage at the arrival epoch
for classk. This is the probability that the typical call
of this class is put in outage immediately at its arrival
epoch.

• Dk denotes themean total time spent in outage during
the typical call of classk.

• Mk denotes themean number of outage incidents expe-
rienced during the typical call of classk.

More formal definitions of these characteristics, as well as
other systemcharacteristics (as e.g. the intensity of outage
incidents) is given in the Appendix. We also introduce two
further characteristics related to the meanthroughputobtained
during the typical call of classk = 1, . . . , J .

• Denote byTk themean throughput during the typical call
of classk. This is the mean bit-rate obtained during such
a call, taking into account the bit-raterk when the call
is not in outage and the best-effort bit rater′k obtained
during the outage periods, averaged over call duration.

• Let T ′

k be the part of the throughput obtained during
the outage periods of the typical call of classk. This is
the mean best-effort bit-rate of such call averaged over
outage periods.

C. Model evaluation

1) Results: We will show how the performance metrics
regarding outage incidents and duration, introduced in Sec-
tion II-B4, can be expressed using probability distribution
functions of somelinear functionals of the random vector
X1, . . . , XJ of independent Poisson random variables with
parametersρj , respectively. Recall that these random variables
correspond to the number of calls of different classes present
in the stationary regime of our streaming model.

Specifically, for givenδ > 0, k = 1, . . . , J andt ≥ 0 denote

F δ
k (t) := P







k
∑

j=1

Xδ,k
j ϕj ≤ t







, (6)



BŁASZCZYSZYN et al.: QUALITY OF REAL-TIME STREAMING IN WIRELESS CELLULAR NETWORKS. . . 5

where Xδ,k
j = Xj for j = 1, . . . , k − 1 and Xδ,k

k =
∑J

j=k Xj1(ϕj ≤ ϕk(1 + δ)).
The following results follow from the analysis of a more

general model presented in the Appendix.
Proposition 2.2: The probability of outage at the arrival

epoch for user of classk is equal to

Pk = 1− F δ
k (1 − ϕk) k = 1, . . . , J . (7)

The mean total time spent in outage during the typical call of
classk is equal to

Dk =
Pk

µk
=

1− F δ
k (1− ϕk)

µk
k = 1, . . . , J . (8)

The mean number of outage incidents experienced during the
typical call of classk (after its arrival) is equal to

Mk =
1

µk

J
∑

j=1

λj

(

F
δ
k (1−ϕk)− F

δ
k (1−ϕk − ϕj)

)

k = 1, . . . , J .

(9)
Proof: Note first that the functionsF δ

k (t) defined in (6)
allow one to represent the stationary probability that the
configuration of users is in a state in which the LESF(δ) policy
serves users of classk

F δ
k (1) = P







k
∑

j=1

Xδ,k
j ϕj ≤ 1







.

In the general model described in the Appendix we denote
this state byFk and its probability byπ(Fk). Thusπ(Fk) =
F δ
k (1). Moreover,

1− F δ
k (1− ϕk) = P







k
∑

j=1

Xδ,k
j ϕj > 1− ϕk







is the probability that the steady state configuration of users
appended with one user of classk is in the complementF ′

k of
the stateFk, i.e., all users of classk are in outage (meaning
k > Kδ(X ′), whereX ′ = (X1, . . . , Xk + 1, . . . , XJ)). Thus
the expression (7) follows from Proposition A.3. Similarly(8)
follows from Proposition A.4 and (9) follows from Proposi-
tion A.5.

Regarding the throughput characteristics, we have the fol-
lowing result.

Proposition 2.3: The mean throughput during the typical
call of classk is equal to

Tk = rk(1 − Pk) + T ′

k = rkF
δ
k (1− ϕk) + T ′

k ,

where

T ′

k = E

[

r
′δ
k (X1, . . . , Xk + 1, . . . , XJ) (10)

1

(

Kδ(X1, . . . , Xk + 1, . . . , XJ) < k
)]

,

with the best-effort rater′k(·) given by (5) and the least-
priority class Kδ(·) begin served by theLESF (δ) policy
given by (4), is the part of the throughput obtained during
the outage periods.
Proof of this proposition is given in the Appendix.

Remark 2.4: Recall from (5) that the variable ratesr′k are
obtained by the user of classk when he is in outage, i.e.,

k > K. They are non-null,r′k > 0, only if ϕk ≤ (1 + δ)ϕK .
In the case of equal requested ratesrk, the intersection of the
two conditions0 < r′k andk > K is equivalent to

(1 + SINRK)1/(1+δ) − 1 ≤ SINRk ≤ SINRK . (11)

2) Remarks on numerical evaluation:In order to be able
to use the expressions given in (2.2) we need to evaluate the
distribution functionsF δ

k (t). In what follows we show how
this can be done using Laplace transforms. Regarding the
throughput in outageT ′

k, expressed in (10) as the expectation
of a non-linearfunctional of the vector(X1, . . . , XJ), we will
use Monte Carlo simulations to obtain numerical values for
this expectation.

Denote byLδ
k(θ) :=

∫∞

0 e−θsF δ
k (s)ds the Laplace trans-

form of the functionF δ
k (t).

Fact 2.5: We have

Lδ
k(θ) =

1

θ
exp





k
∑

j=1

ρδ,kj

(

e−θϕj − 1
)



 ,

where ρδ,kj = ρj for j = 1, . . . , k − 1 and ρδ,kk =
∑J

j=k ρj1(ϕj ≤ ϕk(1 + δ)).
Proof: Note that for givenδ > 0, k = 1, . . . , J the

random variablesXδ,k
1 , . . . , Xδ,k

k are independent, of Poisson
distribution, with parametersρδ,k1 , . . . , ρδ,kk , respectively. The
result follows from [22, Proposition 1.2.2] and a general
relation

∫∞

0
e−θsF (s)ds = 1

θ

∫∞

0
e−θsF (ds).

The probabilitiesF δ
k (·) may be retrieved fromLδ

k(·) using
standard techniques. For example [23, with the algorithm im-
plemented by Hollenbeck [24] in Matlab]. In what follows we
present a more explicit result based on the Bromwich contour
inversion integral. In this regard, denoteLδ

k(θ) = 1/θ−Lδ
k(θ)

(which is the Laplace transform of complementary distribution
function1−F δ

k (t)). Also, denote byR(z) the real part of the
complex numberz.

Fact 2.6: We have

F δ
k (t) = 1− 2eat

π

∫ ∞

0

R
(

Lδ

k(a+ iu)
)

cosut du , (12)

wherea > 0 is an arbitrary constant.
Proof: See [25].

Remark 2.7: As shown in [25], the integral in (12) can
be numerically evaluated using the trapezoidal rule, with
the parametera allowing to control the approximation error.
Specifically, forn = 0, 1, . . . define

hn(t) = hn(t; a, k, δ) :=
(−1)nea/2

t
R

(

Lδ

k

(a+ 2nπi

2t

)

)

,

Sn(t) := h0(t)
2 +

∑n
i=1 hi(t), and S(t) = limn→∞ Sn(t).

Then
∣

∣F δ
k (t)− (1− S(t))

∣

∣ ≤ e−a. Finally, the (alternating)
infinite seriesS(t) can be efficiently approximated using for
example the Euler summation rule

S(t) ≈
M
∑

i=0

(

M

i

)

2−MSN+i(t)

with a typical choiceN = 15, M = 11.
Remark 2.8: The expression (9) for the mean number of

outage incidents involves a sum of potentially big number of
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termsF δ
k (1−ϕk)−F δ

k (1−ϕk−ϕj), j = 1, . . . , J , which are
typically small, and which are evaluated via the inversion of
the Laplace transform. Consequently the sum may accumulate
precision errors. In order to avoid this problem we propose
another numerical approach for calculatingMk. It consists in
representingMk equivalently to (9) as

Mk =
F δ
k (1− ϕk)

µk

J
∑

j=1

λjbk(j) k = 1, . . . , J . (13)

where

bk (j) =
F δ
k (1− ϕk)− F δ

k (1− ϕk − ϕj)

F δ
k (1− ϕk)

(14)

Let k and δ be fixed. Recall the definition ofF δ
k (t) in (6)

and note that the expression (14) may be written as

bk (j) =
P (X ∈ F , X + ǫj /∈ F)

P (X ∈ F)

whereF = F(k) =
{

X ∈ R
J :

∑k
j=1 X

δ,k
j ϕj ≤ 1− ϕk

}

.
The above expression may be seen as the blocking probability
for classj in a classical multi-class Erlang loss system with
the admission conditionX ∈ F . Consequently,bk (·) may
be calculated by using theKaufman-Roberts algorithm[1, 2]
and plugged into (13). Note that by doing this we still need to
calculateF δ

k (1−ϕk) however avoid summing ofJ differences
of these functions as in (9).

III. QUALITY OF REAL -TIME STREAMING IN LTE

In this section we will use the model developed in Sec-
tion II to evaluate the quality of RTS in LTE networks. This
single-server (base station) model will be used to study the
performance of one tagged base station of a multi-cellular
network under the following assumptions:

• We assume a regular hexagonal lattice of base stations
on a torus. This allows us to consider the tagged base
station of the network as a typical one.

• Homogeneous (in space and time) Poisson arrivals on
the torus are marked by i.i.d. (across users and base
stations) variables representing their shadowing with re-
spect to different base stations. These variables, together
with independent user locations determine their serving
(strongest) base stations. A consequence of the indepen-
dence of users locations and shadowing variables is that
the arrivals served by the tagged base station form an
independent thinning of the total Poisson arrival process
to the torus and thus a Poisson process too. Uniform
distribution of user locations and identical distributionof
the their shadowing variables imply that the intensity of
the arrival process to the tagged base station is equal
to the total arrival intensity to the torus divided by the
number of stations. Moreover, the distribution of the
SINR of the typical user of the tagged base station
coincides with the distribution of the typical user of the
whole network.

• The intensity of arrivals of some particular (SINR)-class
to the tagged base station is equal to the total intensity
of arrivals to the tagged cell times the probability of the

random SINR of the typical user being in the SINR-
interval corresponding to this class.

• We consider the “full interference” scenario, i.e., that all
base stations emit the signal with the constant power,
regardless of the number of users they serve (this number
can be zero). This makes the interference, and hence the
service rates, of users of a given base station independent
of the service of other base stations (decouples the service
processes of different base stations).

A. LTE model and traffic specification

1) SINR distribution:Recall that the main motivation for
considering a multi-class model was the necessity to distin-
guish users with different radio conditions, related to different
values of the SINR they have with respect to the serving base
stations. In order to choose representative values of SINR in a
given network and to know what fraction of users experience
a given value, we need to know the(spatial) distribution of
the SINR(with respect to the serving base station) experienced
in this network (possibly biased by the spatial repartitionof
arrivals of streaming calls). This distribution can be obtained
from real-network measurements, simulations or analytic eval-
uation of an appropriate spatial, stochastic model.7 In this
paper we will use the distribution of SINR obtained from the
simulation compliant with the 3GPP recommendation in the
so-called calibration case (to be explained in what follows).
At present, assume simply, that we are given a cumulative
distribution function (CDF) of the SINR expressed in dB,
F (x) := P{10 log10(SINR) ≤ x}, obtained from either of
these methods. In other words,F (x) represents the fraction
of mobile users in the given network which experience the
SINR (expressed in dB) not larger thanx.

Consider a discrete probability mass function

pk := F
(xk+1 + xk

2

)

−F
(xk + xk−1

2

)

k = 1, 2, . . . , J ,

(15)
with x0 = −∞, xJ+1 = ∞. We define the classk = 1, . . . , J
of users as all users having the SINR expressed in dB in the
interval

(

(xk + xk−1)/2, (xk+1 + xk)/2
]

, and approximate
their SINR by the common value SINRk = 10xk/10. Clearly
pk is the fraction of mobile users in the given network which
experience the SINR close to SINRk. Hence, in the case of a
homogeneous streaming traffic (the same requested streaming
rates and mean streaming times, which will be our default
assumption in the numerical examples) we can assume the
intensity of arrivalsλk of users of classk to be equal toλk =
pkλ whereλ =

∑J
i=k λk is the total arrival intensity (per unit

of time per serving base station) to be specified together with
the CDFF of the SINR.

a) CDF of the SINR for 3GPP recommendation:We
obtain the CDFF of SINR from the simulation compliant
with the 3GPP recommendation in the so-called calibration
case, (compare to [29, Figure A.2.2-1(right)]). More precisely,
we consider the geometric pattern of BS placed on the6× 6
hexagonal lattice. In the middle of each hexagon there are

7For this latter possibility, we refer the reader to a recent paper on Poisson
modeling of real cellular networks subject to shadowing [26], as well as
to [27], completed in [28], where the distribution of the SINR in Poisson
networks is evaluated explicitly.
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Fig. 1. Cumulative distribution function of the SINR obtained according to
3GPP specification; see Section III-A1a. An abrupt transition of the CDF to
1 at SINR= 17dB is due to the cell sectorization: each mobile is interfered
by each of the two antennas co-located with its serving antenna on the same
site (and serving the different sectors) with the power equal to at least1% of
the power received from the serving BS. Therefore the signalto interference
ratio is at most0.5× 10−2 = 17dB.

three symmetrically oriented BS antennas, which gives a total
of 108 BS antennas. The distance between the centers of
two neighboring hexagons is0.5 km. Each BS antenna is
characterised by the following horizontal patternA(φ) =
−min(12(φ/θ)2, Am), whereφ is the angle in degrees, with
θ = 70◦, Am = 20dB, and uses transmission power
P = 60dBm (including omnidirectional gain of14dBi). The
distance-loss model (corresponding to the frequency carrier
2GHz) is L(r) = 128.1 + 37.6 log10(r)[dB] where r is the
distance in km. A supplementary penetration loss of 20dB is
added. The shadowing is modeled as a log-normal random
variable of mean one and logarithmic standard deviation of
deviation 8dB, cf [30]. The noise power equals−95dBm
(which corresponds to a system bandwidth of 10MHz, a noise
floor of -174dBm/Hz and a noise figure of 9dB). In order
to obtain the empirical CDF of the SINR we generate 3600
random user locations uniformly in the network (100 user
locations per hexagon on average). Each user is connected
to the antenna with the strongest received signal (smallest
propagation-loss including distance, shadowing and antenna
pattern) and the SINR is calculated. The obtained empirical
CDF F of the SINR is shown on Figure 1.

2) Link characteristics: 3GPP shows in [31,§A.2] that
there is a 25% gap between the practical coding schemes and
the Shannon’s limit for the AWGN channel. Moreover, some
of the transmitted bits are used for signaling, which induces
a supplementary capacity loss of about 30% (see [32,§6.8]).
This made us assumeγ = 0.5(≈ 0.75(1 − 0.3)) in (2). The
system bandwidth isW = 10MHz.

3) Streaming traffic:We assume that all calls require the
same streaming raterk = 256 kbit/s and have the same stream-
ing call time distribution. We split them intoJ = 100 user
classes characterized by values of the SINR falling into differ-
ent intervals regularly approximating the SINR domain from
x1 = −10dB to xJ = 17dB as explained in Section III-A1.
In our performance evaluation we will consider two values of
the spatially uniform traffic demand: 900 and 600 Erlang/km2.

(All results presented in what follows do not depend on
the mean streaming time but only on the traffic demand).
Consequently,k th class traffic demand per unit of surface
is equal to, respectively,pk × 900 andpk × 600Erlang/km2,
wherepk are given by (15). Multiplying by the surface served
by one base station equal to

√
3 · (0.5 km)2/6 ≈ 0.0722 km2

we obtain the traffic demand per cell, per class, equal to
ρk = pk × 900 × 0.0722 ≈ pk × 64.9 Erlang andρk =
pk × 600 × 0.0722 ≈ pk × 43.3 Erlang, respectively, for the
two studied scenarios.

B. Performance evaluation

Assuming the LTE and traffic model described above, we
consider now streaming policies LESF(δ) defined in Sec-
tion II-B3. Recall that in doing so, we assume that users
are served by the antenna offering the smallest path-loss,
and dispose orthogonal down-link channels, with the maximal
ratesrmax

k depending on the value of the SINR (interference
comes from non-serving BS) characterizing classk. Roughly
speaking, LESF(δ) policy assigns the total requested stream-
ing rate rk = 256kbit/s for the maximal possible subset
of classes in the order of decreasing SINR, leaving some
capacity margin to offer some “best-effort” streaming rates
for (some) users remaining in outage. These streaming rates
r′k given by (5) depend on the current configuration of users
and are non-zero for users with SINR within the interval
(1+SINRK)1/(1+δ)− 1 ≤ SINR≤ SINRK , where SINRK is
the minimal value of SINR for which users are assigned the
total requested streaming rate; cf Remark 2.4. In particular,
LESF(0), called theoptimalpolicy, leaves no capacity margin
for users in outage, while LESF(∞), called thefair one, offers
a “best-effort” streaming rate for all users in outage at the
price of assigning the full requested rate256kbit/s to a smaller
number of classes (higher value of SINRK) 8. In what follows,
we use our results of Section II-C to evaluate performance of
these streaming policies in the LTE network model.

1) Outage time: Figure 2 shows the mean time of the
streaming call spent in outage normalized by call duration,
µkDk, evaluated using (8), in function of the SINR value
characterizing classk, for the traffic 900 Erlang/km2 and
different policies LESF(δ). Figure 3 shows the analogous
results assuming traffic load of 600 Erlang/km2. The main
observations are as follows:

• All LESF policies exhibit a cut-off behaviour: the fraction
of time in outage drops rapidly from 100% to 0% when
SINR transgresses some critical values. This cut-off is
more strict for the optimal policy.

• For the traffic of 900 Erlang/km2, users with SINR≥ 3dB
are practically never in outage, when the optimal policy
is used. The same holds true for users with SINR≥ 13dB,
when the fair policy is used.

• When the traffic drops to 600 Erlang/km2, these critical
values of SINR decrease by2dB and5dB, respectively,
for the optimal and the fair policy. Note that the fair
policy is more sensitive to higher traffic load.

8The LESF fair policy seems to be adopted in some implementations of
the LTE.
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Fig. 2. Mean fraction of the requested streaming time in outage, in function
of the user SINR for different policies LESF(δ); traffic 900 Erlang/km2 .
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Fig. 3. Fraction of time in outage as on Figure 2 for traffic 600Erlang/km2 .

2) Number of outage incidents:Figure 4 shows the mean
number of outage incidents per streaming call,Mk evaluated
using (9), in function of the SINR value characterizing classk,
for the traffic 900 Erlang/km2 and different policies LESF(δ).
(Recall that we assume the same streaming time distribution
for all users, and henceλj/µk = ρj making the expression
in (9) depend only on the vector of traffic demand per class.)
Figure 5 shows the analogous results assuming traffic demand
of 600 Erlang/km2. The main observations are as follows:

• For all policies, the number of outage incidents (during
the service) is non-zero only for users with the SINR
close to the critical values revealed by the analysis of the
outage times. Users with SINR below these values are
constantly in outage while users with SINR above them
never in outage.

• More fair policies generate slightly more outage inci-
dents. The worst values are 2 to 2.2 interruptions per call
for the optimal policy, depending on the traffic value, and
2.4 to 3 interruptions per call for the fair policy.

Studying outage times and outage incidents we do not see
apparent reasons for considering fair policies. This motivates
our study of the best-effort service in outage.

3) The role of the “best effort” service:Figure 6 shows
the fraction of time spent in deep outage in function of the
SINR, assuming traffic 900 Erlang/km2. These values should
be compared to the fraction of time spend in outage (for
convenience copied on Figure 6 from Figure 2). Recall, users
in outage do not receive the full requested streaming rate
(assumed 256kbit/s in our example), however they do receive
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Fig. 4. Number of outage incidents during the requested streaming
time, in function of the user SINR for different policies LESF(δ); traffic
900 Erlang/km2 .
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Fig. 5. Number of outage incidents as on Figure 4 for traffic 600 Erlang/km2 .

some non-null “best effort” rates given by (5), unless they
are in deep outage — have SINR too small; cf Remark 2.4.
Considering users in outage but not in deep outage as “par-
tially satisfied”, increasing fairness marginδ allows to (at
least) partially satisfy users with decreasing SINR values.
Obviously the level of the “partial satisfaction” depends on the
throughput obtained in outage periods, which is our quantity
of interest on Figure 7. It shows also two curves for all
policies LESF(δ) assuming traffic 900 Erlang/km2. The upper
ones represent the mean total throughput realized during the
service, normalized to its maximal value; i.e.,Tk/(256kbit/s),
in function of the SINR value characterizing classk. The
fractions of this throughput realized during outage periods,
T ′

k/(256kbit/s), are represented by the lower curves.
Figures 7 and 6 teach us that the role of the LESF(δ)

policies withδ > 0 may be two-fold.

• LESF(δ) policies with small values ofδ, e.g. δ = 0.5,
improve “temporal homogeneity” of service with respect
to the optimal policy, for users having SINR near the
critical value. For example, a user having SINR equal
to 1dB is served by the optimal policy during 80% of
time with the full requested streaming rate (cf. Figure 6).
However, for the remaining 20% of time it does not
receive any service (deep outage, rate 0bits/s). The policy
LESF(0.5) offers to such a user 80% of the requested
streaming rate during the whole streaming time (cf.
Figure 7), with no deep outage periods (cf. Figure 6). The
price for this is that a slightly higher SINR is required
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0 < δ < ∞, the left curve of a given style represents the fraction of time
spent in deep outage. The right curve of a given style recallsthe fraction of
time spent in outage (already plotted on Figure 2). The optimal policy (δ = 0)
does not offer any “best effort” service. The fair policy (δ = ∞) offers this
service for all users in outage.
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Fig. 7. Mean total throughput normalized to its maximal value 256kbit/s
obtained during the service time (upper curves) and its fraction obtained
when a user is in outage (lower curves) for different policies LESF(δ) traffic
900 Erlang/km2 .

to receive the full requested streaming rate (at least 5dB,
instead of 3dB for the optimal policy).

• The fair policy LESF(∞) improves the spatial homogene-
ity of service. It leaves no user in deep outage, however
a much larger SINR= 13dB is required for not to be
in outage (cf. Figure 6). Moreover, the throughput of all
users in outage but not in deep outage is substantially
reduced e.g. from 80% to 40% for SINR= 1dB, with
respect to some intermediate LESF(δ) policies (with
0 < δ < ∞). These intermediate policies can offer
an interesting compromise between the optimality and
fairness.

4) Impact of a non-Poisson-arrivals:Recall that the per-
formance analysis of the model presented in this paper is
insensitive to distribution of the requested streaming times. In
this section we will briefly study the impact of a non Poisson-
arrival assumption. In this regard we simulate the dynamics
of the model with deterministic inter-arrival times (with all
other model assumptions as before) and estimate the mean
fraction of time in outageµkDk and mean number of outage
incidentsMk for each classk. For the comparison, as well
as for the validation of the theoretical work, we perform also
the simulation of the model with Poisson arrivals. The results
are plotted on Figures 8, 9 and 10, 11. Observe first that the
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Fig. 8. Impact of the deterministic arrival process (as compared to the
Poisson one) on the mean fraction of the requested streamingtime in outage,
for the optimal and fair policy; traffic 900 Erlang/km2 .
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Fig. 9. Impact of the deterministic arrival process (as compared to the
Poisson one) on the mean fraction of the requested streamingtime in outage,
for the optimal and fair policy; traffic 600 Erlang/km2 .

simulations of the Poisson model confirm the results of the
theoretical analysis. Regarding the impact of the deterministic
inter-arrival times a (somewhat expected) fact is that the opti-
mal policy remains optimal regarding the fraction of time spent
in the outage and the number of outage incidents. Another,
less evident, observation is that the deterministic inter-arrivals
(more regular than in the Poisson case) donot improve the
situation for all classes of users. In fact, users with small
values of the SINR have smaller fraction of time in outage
under Poisson arrival assumption than in the deterministicone!
This is different from what we can observe for the blocking
probability for the classical Erlang’s loss model; cf e.g. [33,
Figure 8]. Moreover, the deterministic arrivals increase the
number of outage incidents for intermediate values of the
SINR and decrease for extreme ones, especially with the fair
policy. Concluding these observations one can say however,
that the differences between Poisson and deterministic arenot
very significant and hence we conjecture that the Poisson
model can be used to approximate a more realistic arrival
traffic.

IV. CONCLUSIONS

In this paper, a real-time streaming (RTS) traffic, as e.g.
mobile TV, is analyzed in the context of wireless cellu-
lar networks. An adequate stochastic model is proposed to
evaluate user performance metrics, such as frequency and
number of interruptions during RTS calls in function of user
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Fig. 10. Impact of the deterministic arrival process (as compared to the
Poisson one) on the mean number of outage incidents for the optimal and
fair policy; traffic 900 Erlang/km2 .
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Fig. 11. Impact of the deterministic arrival process (as compared to the
Poisson one) on the mean number of outage incidents for the optimal and
fair policy; traffic 600 Erlang/km2 .

radio conditions. Despite some fundamental similarities to the
classical Erlang loss model, a new model was required for this
type of service, where the service denials are not definitivefor
a given call, but only temporal – having the form of, hopefully
short, interruptions (outage) periods. Our model allows totake
into account realistic implementations of the RTS service,e.g.
in the LTE networks. In this latter context, several numerical
demonstrations are given, presenting the quality of service
metrics in function of user radio conditions.

APPENDIX

A GENERAL REAL-TIME STREAMING (RTS) MODEL

In this section we will present a general stochastic model for
real-time streaming. An instantiation of this model was used in
the main body of the paper to evaluate the real-time streaming
in wireless cellular networks. This model comprises Marko-
vian, multi-class process of call arrivals and their independent,
arbitrarily distributed streaming times. These calls are served
by a server whose service capacity is limited. Depending on
numbers of calls of different classes present in the system,
the server may not be able to serve some classes of users. If
such a congestion occurs, these classes are temporarily denied
the service, until the next call arrival or departure, when the
situation is reevaluated. These service denial periods, called
outage periods, do not alter the call sojourn times in the
system. Our model allows for a very general service (outage)
policy saying which classes of users are temporarily deniedthe

service due to insufficient service capacity. We will evaluate
key characteristics of this model using the formalism of point
processes and their Palm theory, often used in the modern
approach to stochastic networking [34]. Specifically, we are
interested in the intensity of outage incidents, the mean inter-
outage times and the outage durations of a given class, seen
from the server perspective, as well as the probability of
outage at the arrival epoch, mean total time in outage and
mean number of outage incidents experienced by a typical
user of a given class. The expressions developed for these
characteristics involve only stationary probabilities ofthe
(free) traffic demand process, which in our case is a vector
of independent Poisson random variables. Recall that such
a representation is possible e.g. for the well known Erlang-
B formula, giving the blocking probability in the classical
(possibly multi-class) Erlang’s loss model. Indeed, our model
can be seen as an extension of the classical loss model, where
the losses (i.e., service denials) are not definitive for a given
call, but only temporal — having the form of outage periods.

A. Traffic demand

ConsiderJ ≥ 1 classes of users identified with calls. We
assume that users of classk ∈ {1, . . . , J} arrive in time
according to a Poisson processNk = {T k

n : n} 9 with intensity
λk > 0 and stay in the system for independent requested
streaming timesW k

n having some general distribution with
mean1/µk < ∞. All the results presented in what follows do
not depend on the particular choice of the streaming time dis-
tributions — the property called in the queueing-theoreticcon-
text insensitivity property. Denote byÑk = {(T k

n ,W
k
n ) : n}

the process of arrival epochs and streaming times (call dura-
tions) of users of classk. We assume that̃Nk are independent
acrossk = 1, . . . , J . Denote byXk(t) =

∑

n 1[Tk
n ,Tk

n+Wk
n )(t)

the number of users of classk present in the system at timet
and letX(t) = (X1(t), . . . , XJ(t)); we call it the (vector
of) user configuration at timet. The stationary distribution
π of X(t) coincides with the distribution of a vector of
independent Poisson random variables(X1, . . . , XJ) with
meansE[Xk] := ρk = λk/µk, k = 1, 2, . . . , J . We call ρk
the traffic demandof classk.

We adopt the usual convention for the numbering of the
arrival epochsT k

0 ≤ 0 < T k
1 . The same convention is used

with respect to all point processes denoting some time epochs.

B. Resource constraints and outage policy

For classk = 1, . . . , J , let a subset of user configu-
rations Fk ⊂ N̄

J be given, whereN̄ = {0, 1, . . .}, such
that all Xk users of classk present in the configuration
X = (X1 . . . , Xk, . . . , XJ) are served if and only ifX ∈ Fk

and no user of classk is served (we say it is inoutage) if
X 6∈ Fk. We call Fk the k th class (service) feasibility set.
Denote byπk = π(Fk) the probability that the stationary
configuration of users is ink th class feasibility set.

9The time instantsT k
n are used only in the Appendix and should not be

confused withTk denoting in the main stream of the paper (and in the proof
of Proposition 2.3 at the end of the Appendix) the mean throughput of user
in classk.
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We assume that, upon each arrival or departure of a user, the
system updates its decision and, for any classk, it assigns the
service to all users of classk if the updated configuration of
users is inFk. All users of any classj for which the updated
configuration is inF ′

k = N̄
J \Fk will be placed in outage (at

least) until the next user arrival or departure.
In what follows we will assume that no user departure

can cause outage of any class of users i.e., switch a given
configuration fromFk to F ′

k. (However a user departure may
make some classj switch fromF ′

j to Fj .)

Denote byX̃k(t) := Xk(t)1Fk
(X(t)) the number of users

of class k not in outageat time t. Denote by X̃(t) =
(X̃i(t), . . . , X̃J(t)) the configuration of usersnot in outage
at time t.

C. Performance metrics

In what follows we will be interested in the following
characteristics of the model.

1) Virtual system metrics:During its time evolution, the
user configurationX(t) alternates visits in the feasibility set
Fk and its complementF ′

k, for each classk = 1, . . . , J . We
are interested in the expected visit durations in theses sets as
well as the intensities (frequencies) of the alternations.More
formally, for each givenk = 1, . . . , J , we define the point
processBk := {τkn : n} of exit epochs ofX(t) from Fk; i.e.,

all epochst such that
(

X(t−),X(t)
)

∈ Fk × F ′

k (with the

conventionτk0 ≤ 0 < τk1 ). These are epochs when all users
of classk present in the system (if any) have their service
interrupted.

Denote byσ′k
n := sup{t − τkn : X(s) ∈ F ′

k ∀s ∈ [τkn , t)}
the duration of then th visit of the processX(t) in F ′

k and
by σk

n := τkn+1− τkn −σ′k
n the duration of then th visit of the

processX(t) in Fk. We define for each classk = 1, . . . , J :

• The intensity of outage incidents of classk, i.e., the mean
number of outage incidents of this class per unit of time

Λk := lim
T→∞

1

T

∑

n

1[0,T )(τ
k
n) .

ObviouslyΛk is also the intensity of entrance to thek th
class feasibility setFk.

• The mean service time between two outage incidents of
classk

σ̄k := lim
N→∞

1

N

N
∑

n=1

σk
n .

• The mean outage duration of classk

σ̄′

k := lim
N→∞

1

N

N
∑

n=1

σ′k
n .

Note that the above metrics characterize a “virtual” quality of
the service, since some visits inFk andF ′

k may occur when
there is nok th class user in the system (in the latter case the
outage of this class is not experienced by any user).

2) User metrics: We adopt now a user point of view on
the system. We define for each classk = 1, . . . , J :

• The probability of outage at the arrival epoch for user
of classk

Pk = lim
N→∞

1

N

N
∑

n=1

1F ′

k
(X(T k

n )) .

• The mean total time in outage of user of classk

Dk = lim
N→∞

1

N

N
∑

n=1

∫

[Tk
n ,Tk

n+Wk
n )

1F ′

k
(X(t))dt .

• The mean number of outage incidents experienced by user
of classk after its arrival

Mk = lim
N→∞

1

N

N
∑

n=1

∑

m

1(Tk
n ,Tk

n+Wk
n )(τ

k
m) .

Note that eventual outage experienced at the arrival of
a given user is not counted inMk. The mean total
number of outage incidents (including possibly at the
arrival epoch) is hencePk +Mk.

For a given classk = 1, . . . , J , denote by εk =
(0, . . . , 1, . . . , 0) ∈ N̄

J the unit vector having itsk th com-
ponent equal to 1. Hencex + εk represents adding one
user of classk to the configuration of usersx ∈ N̄

J .
Denote byP the probability under which{X(t) : t} is
stationary and byE the corresponding expectation. Recall that
π{x ∈ ·} = P{X(t) ∈ ·} is the distribution of the stationary
configuration of usersX(t) (it corresponds to independent
Poisson variables of meanρk).

D. General results

We present first results regarding the virtual system metrics.
These results will be next used to evaluate the user metrics.

Lemma A.1: The intensity of outage incidents of classk is
P-almost surely equal to

Λk =
J
∑

j=1

λjπ {x ∈ Fk,x+ εj ∈ F ′

k} k = 1, . . . , J.

Proof: Let N =
∑J

j=1 Nj be the point process counting
the arrival times of users of all classes. By independence,
N is the Poisson point process of intensityλ =

∑J
j=1 λj .

Then, by the ergodicity of the process{X(t) : t} and the
fact that the exits fromFk can take place only at some user
arrival epoch we have by the Campbell’s formula [cf. e.g. 34,
Equation (1.2.19)10],

Λk = E

[

∫

[0,1)

1Fk×F ′

k
(X (t−) ,X (t))N (dt)

]

= λP0
N {X(0−) ∈ Fk,X(0) ∈ F ′

k} ,

whereP
0
N designates the Palm probability associated toN

(which is, roughly speaking, the conditional probability given
an arrival at time0). By PASTA (Poisson Arrivals See Time
Averages) property [cf. 34, Equation (3.3.4)] the configuration

10with Zn := (X(Tn−),X(Tn)) andf(t, z) = 1[0,1)(t)1Fk×F′

k
(z)
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of usersX(0−) under P0
N has distributionπ. Moreover,

X(0) = X(0−) + εξ where ξ ∈ {1, . . . , J} is underP0
N

independent ofX(0−) and takes valuej with probability
λj/λ. This completes the proof.

Lemma A.2: The mean service time between two outage
incidents and the mean outage duration of classk are P-
almost surely equal to, respectively,

σ̄k =
π (Fk)

Λk
, σ̄′

k :=
π(F ′

k)

Λk
k = 1, . . . , J,

whereΛk is given in Lemma A.1.
Proof: First we prove the expression forσ̄k. By ergodicity

σ̄k = E
0
Bk

[

σk
0

]

P-almost surely, whereE0
Bk

designates the
expectation with respect to the Palm probability associated
to Bk, andE0

Bk

[

τk0
]

= 1/Λk; [see e.g. 34, Equation (1.6.8)
and Equation (1.2.27)]. Applying the mean value formula [see
34, Equation (1.3.2)11] we getπ(Fk) = ΛkE

0
Bk

[

σk
0

]

, which
completes the proof of the expression forσ̄k. For the other
expression, note by the definition of the sequenceσk

n, σ
′k
n and

τkn thatP-almost surely,

σ̄′

k = E
0
Bk

[

σ′k
0

]

= E
0
Bk

[

τk1 − σk
0

]

=
1

Λk
−π(Fk)

Λk
=

π(F ′

k)

Λk
,

which completes the proof.
Proposition A.3: The probability of outage at the arrival

epoch for user of classk is equal to

Pk = π {x+ εk ∈ F ′

k} k = 1, . . . , J (16)

P-almost surely.
Proof: By ergodicity we havePk = P

0
Nk

{X(0) ∈ F ′

k},
whereP0

Nk
designates the Palm probability associated toNk

(arrival process of the users of classk). By PASTA property
the configuration of usersX(0−), just before arrival of the
user of classk at time 0, has distributionπ. Once the user
enters the system, the users configuration becomesX(0−) +
εk, whence the result.

Proposition A.4: The mean total time in outage of user of
classk is P-almost surely equal to

Dk =
1

µk
π {x+ εk ∈ F ′

k} k = 1, . . . , J .

Proof: Again using the ergodicity of{X (t)} we can
write

Dk = E
0
Nk

[

∫

[0,Wk
0
)

1F ′

k
(X(t))dt

]

.

Denote byY (t) := X(t)− εk1[Tk
0
,Tk

0
+Wk

0
)(t) the process of

configurations of users other than the user number 0 of classk
(which arrives at time0 underE0

Nk
). By Slivnyak theorem [see

e.g. 22, Theorem 1.13] the distribution of the process{Y (t) :
t} underP0

Nk
is the same as this of{X(t) : t} underP.

Using the fact thatW k
0 andY (t) are independent underP0

Nk

with E
0
Nk

[W k
0 ] = 1/µk we obtain

Dk =

∫

∞

0

E
0
Nk

[

1[0,Wk
0
)(t)1F ′

k
(Y (t) + εk)

]

dt

=
1

µk

π {x+ εk ∈ F ′

k)] ,

11with Zk (t) = 1Fk
(X (t))

which completes the proof.
Proposition A.5: The mean number of outage incidents

experienced by user of classk after its arrival is P-almost
surely equal to

Mk =
1

µk

J
∑

j=1

λjπ {x+ εk ∈ Fk,x+ εk + εj ∈ F ′

k} , (17)

k = 1, . . . , J .

Proof: Again using the ergodicity of{X (t)} we know
that,P-almost surely,

Mk = E
0
Nk

[

∫

(0,Wk
0
)

Bk(dt)

]

.

Using the fact thatW k
0 andY (t) are independent underP0

Nk

with E
0
Nk

[W k
0 ] = 1/µk we obtain

Mk = E
0
Nk

[

Bk(0,W
k
0 )

]

=
Λ∗

k

µk
,

whereΛ∗

k is the intensity of the point process of exit epochs
of X(t) from F∗

k = {x : x + εk ∈ Fk}. Using Lemma A.1
with Fk replaced byF∗

k concludes the proof.
We will now prove the result regarding the throughput of

the typical call of classk.
Proof of Proposition 2.3: We have

Tk = T δ
k = µkE

0
Nk

[

∫

[0,Wk
0
)

rk1(X(t) ∈ Fδ
k)

+ r
′δ
k (X(t))1(X(t) 6∈ Fδ

k )dt
]

.

It is easy to see, as in the proof of Proposition A.4, thatTk =
rkπ

{

x+ εk ∈ Fδ
k

}

+ T ′

k, where

T ′

k = E

[

r
′δ
k (X(t) + εk)1((X(t) + εk) 6∈ Fδ

k)
]

(18)

is the part of the throughput obtained by user of classk during
its outage time.
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[34] F. Baccelli and P. Brémaud,Elements of Queueing The-
ory; Palm Martingale Calculus and Stochastic Recur-
rences. Springer, 2003.

Bartłomiej Błaszczyszyn received his PhD degree
and Habilitation qualification in applied mathemat-
ics from University of Wrocław (Poland) in 1995
and 2008, respectively. He was an Assistant Pro-
fessor in the Mathematical Institute, University of
Wrocław, and a visiting scientist at the Institute of
Stochastics, University of Ulm (Germany) and IEOR
Department of Columbia University (USA). He is
now a Senior Researcher at Inria (France), and a
member of the Computer Science Department of
Ecole Normale Supérieure in Paris. His professional

interests are in applied probability, in particular in stochastic modeling and
performance evaluation of communication networks. He coauthored several
publications on this subject in major international journals and conferences,
as well as a two-volume book onStochastic Geometry and Wireless Networks
NoW Publishers, jointly with F. Baccelli.



14 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, ACCEPTED FOR PUBLICATION

Miodrag Jovanovic received the Diploma in engi-
neering from the University of Nis, Nis, Serbia, in
2009 and the Master’s degree in electronic systems
from Polytech Nantes, France, in 2011. Currently
he is preparing a Ph.D. dissertation entitled “Eval-
uation and Optimization of the Quality Perceived
by Mobile Users for New Services in Cellular Net-
works” under the guidance of M. Karray and B.
Błaszczyszyn and carried out at Orange Labs, Issy-
Moulineaux and Inria Paris/Rocquencourt, France.

Mohamed Kadhem Karray received his diploma
in engineering from Ecole Polytechnique and Ecole
Nationale Suprieure des Tlcommunications (ENST)
in 1991 and 1993,respectively. He prepared a PhD
thesis at ENST under the guidance of E. Moulines
and B. Błaszczyszyn within 2004-2007. Since 1993
he works at France Télécom R&D (Orange Labs)
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