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Abstract—We present a new stochastic service model with ca- radio conditions of calls, and can be specified to take into

pacity sharing and interruptions, appropriate for the evaluation
of the quality of real-time streaming (e.g. mobile TV) in wireless
cellular networks. It takes into account multi-class Markovian
process of call arrivals (to capture different radio channé
conditions, requested streaming bit-rates and call-durabns) and
allows for a general resource allocation policy saying whit users
are temporarily denied the requested fixed streaming bit-rées
(put in outage) due to resource constraints. We develop gera
expressions for the performance characteristics of this mel,
including the mean outage duration and the mean number of
outage incidents for a typical user of a given class, involvg

only the steady-state of the traffic demand. We propose also

a natural class of least-effort-served-first resource allcation
policies, which cope with optimality and fairness issues kown in
wireless networks, and whose performance metrics can be ebs
calculated using Fourier analysis of Poisson variables. \Wgpecify
and use our model to analyze the quality of real time streamig
in 3GPP Long Term Evolution (LTE) cellular networks. Our

results can be used for the dimensioning of these networks.

Index Terms—Real-time streaming, stochastic model, mobile
TV, LTE, quality of service, interruptions, outage, deep ouage,
capacity-sharing, Poisson process.

I. INTRODUCTION

account the parameters of a given wireless cellular tecigyol

We develop expressions for several important performance
characteristics of this model, including the mean time spen
in outage and the mean number of outage incidents for a
typical streaming call in function of its radio conditiorfhese
expressions involve only stationary probabilities of tfred)
traffic demand process, which is a vector of independent
Poisson random variables describing the number of users in
different radio conditions.

We use this model to analyze RTS in a typical cell of
a 3GPP Long Term Evolution (LTE) cellular network as-
suming orthogonal intra-cell user channels with the peak
bit-rates (achievable when there are no other users in the
same cell) close to the theoretical Shannon’s bound in the
additive white Gaussian noise (AWGN) channel, with the
extra-cell interference treated as noise. These assunspéad
to a radio resource constraint in a multi-rate linear form.
Namely, each user experiencing a given signal-to-(exetB-c
interference-and-noise ratio (SINR) requires a fixed foaobf
the normalized radio capacity, related to the ratio betwiesen
requested and peak bit-rates. All users of a given configurat
(experiencing different SINR values) can be entirely §atis

IRELESS cellular networks offer nowadays possibilityf and only if the total required capacity is not larger than

to watch TV on mobile devices, which is an examplene?

of a real-time content streaming. This type of traffic demand In the above context of a multi-rate linear radio resource
is expected to increase significantly in the future. In orger constraint, we analyse some natural parametric clagsast-
cope with this process, network operators need to implemeneffort-served-firs{LESF) service policies, which assign ser-
their dimensioning tools efficient methods allowing to peed vice to users in order of their increasing radio capacity
the quality of this type of service. The quality of real-timelemand, until the full capacity (possibly with some margin)
streaming (RTS) is principally related to the number and reached. The capacity margin may be used to offer some
duration ofoutage incidents— (hopefully short) periods when “lower quality” service to users temporarily in outage thus
the network cannot deliver to a given user in real-time thealizing some type of fairness with respect to unequal user
requested content of the required quality. In this paper wadio-channel conditions. This class contains an optiméla
propose a stochastic model allowing for an analytic evalunat fair policy, the latter being suggested by LTE implemeiotagi

of such metrics. It assumes a traffic demand with differentIn order to evaluate explicitly the quality of service mesri
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induced by the LESF policies we relate the mean time spentin
outage and the mean number of outage incidents for a typical
streaming call in given radio conditions to the distribatio

IRecall that in the case of voice calls and, more generallystemt bit-rate
(CBR) calls the multi-rate linear form of the resource comists has already
proved to lead to efficient model evaluation methods, via &gufman-
Roberts algorithm [1, 2]. Despite some fundamental siiti¢sr to CBR
service, the RTS gives rise to a new model, due to the factttieaservice
denials are not definitive for a given call, but have a form eimporal
interruptions (outage) periods.

1536-1276/13$31.000) 2014 IEEE
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functions of some linear functionals of the Poisson vectgome recent work on this problem in the video streaming con-
describing the steady state of the system. We calculate thgt. Also, [16, 17] consider some admission control pebci
Fourier transforms of these functions and use a well-knovim guarantee non-dropping of multimedia calls due to caller
Fourier transform inversion method to obtain numericaligal impatience and/or handoffs.
of the quantities of interest. We also study the mean thrpugh  The remaining part of this papés organized as follows. In
during a typical streaming call evaluating the expectatioh Section Il we will present our model for the evaluation of the
the corresponding non-linear functionals of the Poissaitore quality of RTS in wireless cellular networks. Technical pi®
describing the steady state of the system via the Monte Caodibthe results presented in this section are postponed to the
method. Appendix, where they are given in a more general context.
Using this approach, we present a thorough study 8kction Il specifies our model to be compliant with the LTE
the quality of RTS with LESF policies in the aforemeneellular networks specification and presents numericallies
tioned Markovian setting. For completeness we present alemarding the quality of RTS in these networks.

some pure-simulation results illustrating the impact ofca n
Poisson-arrival assumption. Il. STREAMING IN WIRELESS CELLULAR NETWORKS

In this section we present a new stochastic model of RTS
Let us now recollect a fewelated workson the performance in cellular networks.

evaluation of cellular networks. In early 80’s, wirelestar
networks were carrying essentially voice calls, which regu A, System assumptions
constant bit-rates (CBR) and are subject to admission abntr
policies with blocking (at the arrival epoch) to guaranteese

rates for calls already in service. An important amount ofkvo
has been done to propose efficient call admission policies [%

5]. Policies with admission conditions in the multi-ratedar video) content, contacting base stations of a network atoan

form have t_)een considered e.g. in [6-8]. , times, for random durations, requesting some fixed stregmin
Progressively, cellular networks started carrying alssca, i --+s \We consider a uni-cast traffic (as opposed to the
with variable bit-rates (VBR), used to transmit data filekeT broadcast or multi-cast case), i.e.; the content is delivéo

available resources are (fairly) shared between such aatls all users via private connections. Different classes ofraise

when the traffic demand_ increases, the_ file transfer delays {Ealls) need to be distinguished, regarding their radicnola
crease as well, but (in principle) no callis ever blogkeobé'_dn conditions, requested streaming bit-rates and mean simgam
delays may be e_vaIgated _a”a'Y“Ca”Y using multl-ratedmetimes_ Each user chooses one base station, the one with the
resource constraint in conjunction with multi-class pssme smallest path-loss, independently of the configurationsefsi

sharing models; cf e.g. [8, 9]. i ) i _served by this station. Thus, we do not consider any load-
Recently, users may access multimedia streaming ServigeSancing policy

through their mobile devices [10]. They are provided via CBR 2) Data layer — streaming policiedf a given base station

connections, essentially without admission control, &yt .,nn0t serve all the users present at a given time, it temigora
tolerate temporary interruptions, when network congestiogs, s sreaming the requested content at the requestetb rate

occur. One may distinguish two types of streaming traffic. Nsars of some classes, according to some given policy (to be

real-time streaming (RTps e.g. in mobile TV), ConSidereddescribed), which is supposed to preserve a maximal subset

in this paper, the portions of the streaming content emittefl sorved users. We call these (classes of) users with the
during the time when the transmission to & given USer j§qested bit-rate temporarily denigdoutage The users in

interrupted (is in outage) are definitely lost for him (uslesy i34 will not receive the part of the content which is eeaiitt
a “secondary”, lower-rate streaming is provided duringsée y,ring their outage times (this is the principle of the RTS).

periods). Innon-real-time s_,tream_ing (NRTH)ke e.g., video- ‘We will also consider policies, which offer some “best-e&ffo
on-demand, YouTube, Dailymotion, etc), a user starts pRyigyeaming bit-rates for some classes of users in outags, thu
back the requested multimedia content after some initiaydle o\ing for example to keep receiving the requested cdnten

required to deliver and buffer on the user device some Initlgut of a lower quality. Users, which are (temporarily) dehie
portion of it. If further transmission is interrupted forree even this lower quality of service are calleddeep outage
time making the user buffer co_ntent drop to zero (buffer 3) Medium access in this paper we assume that users
starvation) then the play-back is stopped until some neys connected to the serving antennas via orthogonal single
required portion of the content is delivered. Several PRPGFt-single-output (SISO) channels allowing for the peak
study the effect of the variability of the wireless chanretiee o0 jose to the theoretical Shannon’s bound in the aeditiv
performance of a single streaming call; see for e.g. [1H].[1 \yhite Gaussian noise (AWGN) model, with the (extra-cell)
In [13] VBR transmissions and RTS are considered jointly ifyerference treated as nois#Ve will also comment on how to

some analytical model, however the number and duration |’?1fodel multiple-input-multiple-output (MIMO) and broadita
outage periods are not evaluated. In [14] the tradeoff betwe.pannels.

the start-up delay and the probability of buffer starvation

is analyzed in a Markovian queuing framework for NRT? Orthogonality qf channels is an appropriate assumptioncéorent LTE
: Long Term Evolution) norm for cellular networks based onBDFA, as well
streaming. as for other multiple access techniques as FDA, TDMA, CDMAuasing

We do not consider any cell-load balancing; see [15] ferfect in-cell orthogonality, and even HDR neglecting sicheduler gain.

We consider the following scenario of multi-user streaming
in a cellular network.

1) Network layer: Geographically distributed users wish

obtain down-link wireless streaming of some (typically
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4) Physical layer: The quality of channel of a given usermeansE[X] := pr = A/, k = 1,2,...,J. We call py
depends on the path-loss of the signal with respect to its sethe traffic demand(per base station) of clags
ing base station, a constant noise, and the interference fro 2) Wireless resource constraint&isers are supposed to be
other (non-serving) base stations. These three compodentsoffered the requested streaming rates for the whole reegiest
termine its signal-to-interference-and-noise ratio (8)JNBoth streaming times. However, due to limited wireless resajrce
path-loss form the serving station and interference adcodar some configuration of usefX (¢), the requested streaming
for the distance and random propagation effects (shadQwingites» = (r1,...,7;) may be not achievable. Following
Our main motivation for considering a multi-class modelds tthe assumption of orthogonal AWGN SISO wireless channels
distinguish users with different SINR values. In other wgrd (with the (extra-cell) interference treated as noise) late
even if we assume that all users require the same streamfiog users of a given station, we assume that the requested
times and rates, we still need a multi-class model due tates are achievable for all calls present at time
(typically) different SINR'’s values of users in wirelesdlakar e
networks. X (t)T‘k =y, k=1,...,J, Q)
5) Performance characteristicsVe will present and an- for some non-negative vecto(vy,...,vy), such that
alytically evaluate performance of some (realistic) Stizm 2}521 v, < 1, where
policies in the context described above. We will be partdyl

interested in the following characteristics: . = yWlog(1 + SINRy) (2)
« fraction of time spent in outage and in deep outage during the maximal (peak) bit-rate of a user of classwhose
the typical call of a given class, channel conditions are characterized by SINFhe rater}"®*

« number of outage incidents occurring during this call, js available to a user of clagsif it is the only user served

« mean throughput (average bit-rate) during such cafly the base station.) Heli@ is the frequency bandwidth and
accounting for the requested bit-rates and for the “best-(with 0 < v < 1) is a coefficient telling how close a given
effort” bit-rate obtained during the outage periods.  coding scheme approaches the theoretical Shannon’s bound

(corresponding toy = 1); cf [18, Th .9.1.1].° Note that

the assumption (1) corresponds to the situation, when users

. . neither hamper nor assist each other’s transmission. Teey u
In what follows we describe a mathematical model of thg,,nneis which are perfectly separated in time, frequency o

RTS that is an incarnation of a new, more general, stochagli¢ orthogonal codes, nevertheless sharing these resofirces

service model with capacity sharing and interruptions Pre<\we can interpret the ratio between the requested and max-
sented and analyzed in the Appendix A. This is a single Serg{o| pit-rates max go theresource demanaf a

. Pk = Tk/r
model which allows to study the performance of one tagggfle of clasg:. Note that ]'Ehe configuration of useM(t) can

base station of a multi-cellular network satisfying the &0 e entirely served if and only if the total resource demand
system assumptions. More details on how this model fits tAgi<fies the constraint

multi-cell scenario will be presented in Section Il ;
1) Traffic demand: Consider J > 1 classes of calls

(or, equivalently, users) characterized by differeequested ;(kak(t) st 3)

streaming bit-ratesr,, wireless channel conditionge- B

scribed by the signal-to-(extra-cell)-interference-auise ra-

tio SINR;, with respect to the serving base-statibandmean

requested streaming timdgu, k=1,...,J.

B. Model description

This is amulti-rate linear resource constraint

3) Service policy:If the requested streaming rates are not
achievable for a given configuration of useXyt) present at

We assume that calls of clags € {1,...,J} arrive in time ¢, then some cla§ses of users vyill be .temporarily put in
time according to a Poisson process with intensify > 0 ogtage at time¢, meaning that they will receive some smaller
(number of call arrivals per unit of time, per base statiorjit-rates (whose values are not guaranteed and may depend

and stay in the system (keep requesting streaming) for ind¥! the configurationX (¢)). These smaller, “best-effort” bit-
pendent times, having songeneral distributionwith mean 'atés may drop to 0, in which case we say that users are in

1/uy < oo. * Different classes of calls are independent frorﬁeep-outage. Let us recall that the times .a'F which users are
each other. We denote by, (t) the number of calls of a N outage and deep outage dot alter the original streaming

g_lven Class. reque;tlng Streamlng from a given BS. a.'t. tlmesIt was also shown in [19] that the performance of AW@Niltiple input
i, see Secthn A n the Appendix .for a formal def|n|t|0n_$nultiple output(MIMO) channel can be approximated by taking values of
of these variables in terms of arrival process and servige> 1. Another possibility to consider MIMO channel is to use thaa

times. LetX (¢) = (X, (1), ..., Xs(t)); we call it the (vector ¢apacity formula given in [20]. , _ o
f fi . . Th . distributi From information theory point of view, the orthogonalitysamption is
0 ) user configuration at time. e stationary distribution not optimal. In fact, the theoretically optimal performanis offered by the

m of X (t) coincides with the distribution of the vectorbroadcast channemodel. It is known that in the case of AWGN broadcast

(Xl o XJ) of independent Poisson random variables witgiannel the rates are (theoretically) achievable for the configuratiah if
D (and only if) there exists a vectdp1, . . ., ), such that> " _, v < 1 and

3In this paper the interference is always caused only by eovirgy base
stations.

4All the results presented in this paper do not depend on thicylar
choice of the streaming time distributions. This propegyoften referred to where the classes of users are numbered such that;SINBINR; > ... >
in the queuing context as the insensitivity property. SINRy; cf [21, Eq. 6.29].

Vi
+ k—1
1/SINR;, + > F -1y

Xkrk:Wlog(l ) k::1,...,J,
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times; i.e. the streaming content is not buffered, nor dadaywith a given LESF§) policy. Fork > K = K°(X) denote
during the outage periods. K
We will define now a parametric family of service polices , s _,max 1- Zj:l Xjp;
. . . e =T (X) =1} 7
for which classes with smaller resource demands have higher D i Xil(py < (14 0)¢x)
if o < (1+0)px and O otherwise.

(%)

service priority In this regard, in the remaining part of the
paper we assume (without loss of generality) that the resour
demands of users from different classes are orderpd<
po < ...< .

a) Least-effort-served-first policyFor a given config-
uration of usersX = X (t) requesting streaming at time
t, least-effort-served-first policy with-margin (LESF¢) for
short) attributes the requested bit-rates to all usersansels
k=1,...,K, where

K:K‘;(X):max{ke{17...,J}: 4)

The rates(ry,...,7x, 7k, 1,---,77) are achievable for the
configurationX under resource constraint (3). Note that users
in classesj such thatp; > (1 + 6)px do not receive any
positive bit-rate. We say, they are deep outageFinally, we
remark that the service (5) is “resource fair” among users in
outage but not in deep outage.

4) Performance metrics: Configuration of usersX(t)
evolves in time, it changes at arrival and departure times of
users. At each arrival or departure epoch the base station
applies the outage policy to the new configuration of users
to decide which classes of users receive requested strgamin
rates and which are in outage (or deep outage).

Let us introduce the following characteristics of tiypical
call (user)of classk =1,...,J.

Py, denotes th@robability of outage at the arrival epoch

for classk. This is the probability that the typical call

of this class is put in outage immediately at its arrival
epoch.

« Dy denotes thenean total time spent in outage during
the typical call of clasg:.

k—1 J
Y oiXi+en Y Xl < @r(1+6) <1,
=1 =k

wherel 4(z) = 1 is the indicator function of sefl and/ is
a constant satisfying < § < co.

Remark 2.1: The LESKO0) policy is optimalin the follow-
ing sense: given constraint (3) and the assumption that the
classes with smaller resource demands have higher priority
this policy allows to serve the maximal subset of users mtese
in the system. For the same reason any LE&$Mpolicy
with § > 0 is clearly sub-optimal. In order to explain the
motivation for considering such policies, one needs torekte o
the model and explain what actually happens with classes’ Mk denote§ thenean f‘”mber of outage incidents expe-
of users which experience outage. In this regard, note that rienced d””'_"g .the typical call of clasls._ _
¢ = Zﬁ; ¢;X; < 1is the actual fraction of the serverMore formal definitions of these characteristics, as well as
capacity consumed by the users which are not in outage. TfBer systemcharacteristics (as e.g. the intensity of outage
remaining server capacity— C' (which is not needed to serveincidents) is given in the Appendix. We also introduce two
users in c:'asseg:;7 ce K) can be used to offer some “|0werfurther characteristics related to the mehmughputobtalned
quality” service (e.g. streaming with lower video resadutj during the typical call of clast =1,...,J.
etc) to the users in classés+ 1,. .., J which are in outage. « Denote byI}, themean throughput during the typical call
Note by (4) that the remaining server capacity under thecpoli of classk. This is the mean bit-rate obtained during such
LESK() is at least a call, taking into account the bit-ratg when the call

J is not in outage and the best-effort bit ratg obtained
1-C> X1(p; < 1+44)). during the outage periods, averaged over call duration.
oK j:%:H ey < orel ) » Let 7] be thepart of the throughput obtained during

the outage periods of the typical call of claBsThis is
the mean best-effort bit-rate of such call averaged over
outage periods.

Hence, the server accepting the cldssas the least-priority
class being “fully” served, leaves enough remaining cédpaci
to be able to make the same effort (allocate service capacity
oK) for all users in outage in classes whose service demand
exceedspx by no more than x 100%. These latter users C. Model evaluation
will not have “full” required service (since this requireorn
resources,p; > g, for the full service) but only some
“lower quality” service (to be specified in what follows)
Consequently, one can conclude that policies L&$Rvith

0 > 0, being sub-optimal, ensure sonfairness in the
sense explained above. Clearly the policy LESF (i.e., with

0 = o0) is the most fair, in the sense that it reserves enou
remaining capacity to offers the “lower quality” service fl
users in outage (no deep outage). Thus, we will call LESF
the LESF fair policy.

1) Results: We will show how the performance metrics
regarding outage incidents and duration, introduced in Sec
‘tion 11-B4, can be expressed using probability distribaotio
functions of somelinear functionals of the random vector
Xq,...,X; of independent Poisson random variables with

arameterg;, respectively. Recall that these random variables

Brrespond to the number of calls of different classes ptese
in the stationary regime of our streaming model.

Specifically, for givery > 0,k =1,...,J andt > 0 denote

b) Best-effort service for users in outag@/e will spec-
ify now a natural model for the “best-effort” streaming bit-

rates that can be offered for users in outage in association

k
Fit) =P XM <t g, 6)

J=1
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where XM = X; for j = 1,...,k —1 and X,‘:”“ = k> K. They are non-nullyj, > 0, only if @5 < (1 +J)px.
ZJ L X 11(% < or(14+6)). In the case of equal requested ratgsthe intersection of the
The following results follow from the analysis of a mordwo conditions0 < r; andk > K is equivalent to
general model presented in the Appendix. 1/(146
Proposition 2.2: The probability of outage at the arrival (14 SINRx) /% —1 < SINR, < SINRy . (11)
epoch for user of clask is equal to 2) Remarks on numerical evaluatiomn order to be able
5 to use the expressions given in (2.2) we need to evaluate the
Pe=1-F.(1— k) k=1...,J. () gistribution functionst( ). In what follows we show how

The mean total time spent in outage during the typical call #fis can be done using Laplace transforms. Regarding the

classk is equal to throughput in outagé’, expressed in (10) as the expectation
5 of anon-linearfunctional of the vecto(X, ..., X ), we will
Dy = Pe _1-Fj (1~ ¢x) k=1,...,J. (8) Uuse Monte Carlo simulations to obtain numerical values for
Mk Mk this expectation.
The mean number of outage incidents experienced during théenote byL) (0) := [~ e % F)(s)ds the Laplace trans-
typical call of classk (after its arrival) is equal to form of the funcUoan( )-

1Y Fact 2.5: We have
:_ZAJ(FIf(l_SOk)—Flg(l_@k_QOJ')) k=1,...,J.
Hk 5=

k
5 _ ’ *‘9 R
(9) Ly ( ——exp Zp o ) )
Proof: Note first that the function#} (¢) defined in (6)
allow one to represent the stationary probability that thgnere ,? p = pj for j = 1,...,k—1 and pi’k _

configuration of users is in a state in which the LESR{olicy

serves users of clags Zﬂ:k Pil(p; < @i(l+0))

Proof: Note that for givené > 0, k = 1,...,J the

. random variables¢ . X‘”“ are mdependent of Poisson
FR(1) ZX p;<1p. distribution, with parameter)s1 ,...,pk'k, respectively. The
J=1 result follows from [22, Proposmon 1.2.2] and a general
In the general model described in the Appendix we dend@ation [;™ e™**F(s)ds = 3 [* e~ F(ds). S u
this state byF, and its probability byr(Fy). Thusm(F;) = The probablhtlest( ) may be retrieved fronCj (-) using
FJ(1). Moreover standard techniques. For example [23, with the aIgonthm im
k . H .
plemented by Hollenbeck [24] in Matlab]. In what follows we
s k s present a more explicit result based on the Bromwich contour
1-Fe(1—gr) =P ZXJ" P> 1=k inversion integral. In this regard, dend@g (6) = 1/60—L(0)
i=1 (which is the Laplace transform of complementary distiiout

is the probability that the steady state configuration ofrsisunction1— £y (t)). Also, denote byR(z) the real part of the
appended with one user of classs in the complemenf;, of complex numbet.

the stateFy, i.e., all users of clask are in outage (meaning Fact 2.6: We have

k> K°(X'), whereX’ = (Xy,..., Xz +1,...,X)). Thus s 20t 5 .

the expression (7) follows from Proposition A.3. Simila(8) Fe(t)=1-— /0 R (ﬁk(a + W)) cosutdu, (12)
follows from Proposition A.4 and (9) follows from Proposi-

wherea > 0 is an arbitrary constant.

tion A.5. - Proof: See [25]. [ |
R ding the th hput ch teristics, h the fol- . i .
Iowiﬁgar:eslzﬁ © throughptt characteristics, we have the 10 Remark 2.7: As shown in [25], the integral in (12) can

be numerically evaluated using the trapezoidal rule, with
the parameten allowing to control the approximation error.
Specifically, forn = 0,1,... define

hn(t) = (0, , 8) = % <£k(L2"“)) ,

Proposition 2.3: The mean throughput during the typical
call of classk is equal to

T, =re(1— Py) + T, = re FR (1 — 3) + T,

where 2t
T,;:E[T;J(Xl,...,XHL...,XJ) (10) S,(t) := o0 4 5™ h(t), and S(t) = limy, a0 Su(t).
s Then |F{(t) — (1 — S(t))| < e~ Finally, the (alternating)
]l(K (Xp, X 1,0, Xy) < k)} ; infinite seriesS(¢) can be efficiently approximated using for

with the best-effort rater) () given by (5) and the least- example the Euler summation rule

priority class K°(-) begin served by thet ESF(5) policy Mo

given by (4), is the part of the throughput obtained during St~y ( ; > 27 MSn1i(t)
the outage periods. i=0

Proof of this proposition is given in the Appendix. with a typical choiceN = 15, M = 11.

Remark 2.4: Recall from (5) that the variable rate§ are Remark 2.8: The expression (9) for the mean number of
obtained by the user of clags when he is in outage, i.e., outage incidents involves a sum of potentially big number of
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termsFY (1—pr) — F (1 — o1 —¢;), j = 1,...,J, which are random SINR of the typical user being in the SINR-
typically small, and which are evaluated via the inversién o interval corresponding to this class.

the Laplace transform. Consequently the sum may accumulate We consider the “full interference” scenario, i.e., that al
precision errors. In order to avoid this problem we propose base stations emit the signal with the constant power,

another numerical approach for calculatihg,. It consists in regardless of the number of users they serve (this number
representing\/;, equivalently to (9) as can be zero). This makes the interference, and hence the
s J service rates, of users of a given base station independent
M, — FR(1— o) Z Aibi(5) k=1,....J. (13) of the service of other base stations (decouples the service
Kk = ! T processes of different base stations).
where A. LTE model and traffic specification
be () FP(1— ) — F) (1 — o1 — ) (14) 1) SINR distribution: Recall that the main motivation for
k\J) =

F)(1— ) considering a multi-class model was the necessity to distin
) o 5o guish users with different radio conditions, related tded#nt
Let k andd be fixed. Recall the definition ofy’ () in (6) yajues of the SINR they have with respect to the serving base

and note that the expression (14) may be written as stations. In order to choose representative values of SH\R i
. P(XeF X+¢¢F) given network and to know what fraction of users experience
b (j) = P (X € F) a given value, we need to know tliepatial) distribution of

the SINRwith respect to the serving base station) experienced
where F = F(k) = {X cR’: 25:1 Xf’kspj <1—¢y . in this network (possibly biased by the spatial repartitain
The above expression may be seen as the blocking probabififfivals of streaming calls). This distribution can be afta
for classj in a classical multi-class Erlang loss system witffom real-network measurements, simulations or analytd-e
the admission conditiodX € F. Consequentlyp, (-) may uation of an appropriate spatial, stochastic mdd#. this
be calculated by using th€aufman-Roberts algorithifi,, 2] Paper we will use the distribution of SINR obtained from the
and plugged into (13). Note that by doing this we still need @mulation compliant with the 3GPP recommendation in the

calculateF} (1— ;) however avoid summing of differences so-called calibration case (to be explained in what folljows
of these functions as in (9). At present, assume simply, that we are given a cumulative

distribution function (CDF) of the SINR expressed in dB,
F(z) := P{10log;,(SINR) < z}, obtained from either of
these methods. In other wordBj(x) represents the fraction

_In this section we will use the model developed in Segsf mobile users in the given network which experience the
tion Il to evaluate the quality of RTS in LTE networks. Thiss|NR (expressed in dB) not larger than

single-server (base station) model will be used to study theconsider a discrete probability mass function
performance of one tagged base station of a multi-cellular

I11. QUALITY OF REAL-TIME STREAMING IN LTE

network under the following assumptions: pri=F xk“;— xk)—F(Ik +2Ik71) k=1,2,...,J,

o We assume a regular hexagonal lattice of base stations (15)

on a torus. This allows us to consider the tagged bagéth xp = —oc, z;11 = co. We define the clask=1,...,J
station of the network as a typical one. of users as all users having the SINR expressed in dB in the

« Homogeneous (in space and time) Poisson arrivals omterval ((z) + zx—1)/2, (xx+1 + 2x)/2], and approximate
the torus are marked by i.i.d. (across users and bakeir SINR by the common value SINR= 10°+/10, Clearly
stations) variables representing their shadowing with rgy is the fraction of mobile users in the given network which
spect to different base stations. These variables, togetkgperience the SINR close to SINRHence, in the case of a
with independent user locations determine their servifgmogeneous streaming traffic (the same requested strgamin
(strongest) base stations. A consequence of the indepeates and mean streaming times, which will be our default
dence of users locations and shadowing variables is tlasumption in the numerical examples) we can assume the
the arrivals served by the tagged base station form arensity of arrivals\; of users of clasg to be equal to\;, =
independent thinning of the total Poisson arrival procegg\ where\ = Z;’:k i is the total arrival intensity (per unit
to the torus and thus a Poisson process too. Uniforofi time per serving base station) to be specified togethér wit
distribution of user locations and identical distributioh the CDFF of the SINR.
the their shadowing variables imply that the intensity of a) CDF of the SINR for 3GPP recommendatioxie
the arrival process to the tagged base station is eqe@ltain the CDFF of SINR from the simulation compliant
to the total arrival intensity to the torus divided by thevith the 3GPP recommendation in the so-called calibration
number of stations. Moreover, the distribution of thease, (compare to [29, Figure A.2.2-1(right)]). More psety,
SINR of the typical user of the tagged base statiome consider the geometric pattern of BS placed onéthe6
coincides with the distribution of the typical user of thénexagonal lattice. In the middle of each hexagon there are
whole network.

« The intensity of arrivals of some particular (SINR)-class 7F0r_ this latter possibility, we refer the reader to a receayigr on Poisson

. . . odeling of real cellular networks subject to shadowing][26 well as
to the tagged base station is equal to the total mtens{ﬂy

’ ) < [27], completed in [28], where the distribution of the ®Nn Poisson
of arrivals to the tagged cell times the probability of th@etworks is evaluated explicitly.
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- (All results presented in what follows do not depend on
o the mean streaming time but only on the traffic demand).
08 Consequentlyk th class traffic demand per unit of surface
07 is equal to, respectivelyy, x 900 andp;, x 600 Erlang/km?,
0% wherep,, are given by (15). Multiplying by the surface served
g 0 by one base station equal {43 - (0.5km)?/6 ~ 0.0722 km?
° o we obtain the traffic demand per cell, per class, equal to
0% pr = pr X 900 x 0.0722 ~ p;, x 64.9 Erlang andp, =
o pr X 600 x 0.0722 =~ p; x 43.3 Erlang, respectively, for the
o two studied scenarios.
0100 87 654321001 2545°678691011121314151817 B. Performance evaluation

SINR [dB]
Assuming the LTE and traffic model described above, we

Fig. 1. Cumulative distribution function of the SINR obtethaccording to consider now streaming policies LESJ(defined in Sec-
3GPP specification; see Section Ill-Ala. An abrupt tramsitof the CDF to  tion 1I-B3. Recall that in doing so, we assume that users
1 at SINR= 17dB is due to the cell sectorization: each mobile is intederegre served by the antenna offering the smallest path-loss,
by each of the two antennas co-located with its serving aatem the same . . . .
site (and serving the different sectors) with the power etpat least1% of and dlspose Ortthonal down-link channels, with the makima
the power received from the serving BS. Therefore the sigmaiterference ratesr;"** depending on the value of the SINR (interference
ratio is at mos0.5 x 102 = 17dB. comes from non-serving BS) characterizing clasRoughly

speaking, LESH) policy assigns the total requested stream-

ing rate r, = 256kbit/s for the maximal possible subset
three symmetrically oriented BS antennas, which givesa topf classes in the order of decreasing SINR, leaving some
Of 108 BS antennas. The distance betWeen the CenterSCaﬁacity margin to offer some “best-effort” Streaming sate
two neighboring hexagons i8.5km. Each BS antenna isfor (some) users remaining in outage. These streaming rates
characterised by the following horizontal pattef{¢) = , given by (5) depend on the current configuration of users
—min(12(¢/6)?, An,), whereg is the angle in degrees, withand are non-zero for users with SINR within the interval
0 = 70° A, = 20dB, and uses transmission power(1+5|NRK)1/(1+5) —1 < SINR < SINRg, where SINFR is
P = 60dBm (including omnidirectional gain of4dBi). The the minimal value of SINR for which users are assigned the
distance-loss model (corresponding to the frequency erarrota| requested streaming rate; cf Remark 2.4. In particula
2GHz) is L(r) = 128.1 + 37.6log,,(r)[dB] wherer is the | ESF(), called theoptimal policy, leaves no capacity margin
distance in km. A supplementary penetration loss of 20dB f§r users in outage, while LESK(), called thefair one, offers
added. The shadowing is modeled as a log-normal rand@Mmpest-effort” streaming rate for all users in outage at the
variable of mean one and logarithmic standard deviation Bfice of assigning the full requested rateskbit/s to a smaller
deviation 8dB, cf [30]. The noise power equal5dBm pumbper of classes (higher value of SINJRE. In what follows,
(which corresponds to a system bandwidth of 10MHz, a noigg use our results of Section 1I-C to evaluate performance of
floor of -174dBm/Hz and a noise figure of 9dB). In ordefhese streaming policies in the LTE network model.
to obtain the empirical CDF of the SINR we generate 3600 1) Outage time: Figure 2 shows the mean time of the
random user locations uniformly in the network (100 US&freaming call spent in outage normalized by call duration,
locations per hexagon on average). Each user is conne%%g)k, evaluated using (8), in function of the SINR value
to the antenna with the strongest received signal (Sma"‘%ﬁtaracterizing clasg, for the traffic 900 Erlang/k and
propagation-loss including distance, shadowing and aaterjifrerent policies LESE). Figure 3 shows the analogous

pattern) and the SINR is calculated. The obtained empiriGalsyits assuming traffic load of 600 ErlangknThe main
CDF F of the SINR is shown on Figure 1. observations are as follows:

2) ITink characteristics: 3GPP shows in [3_1§A'2] that « All LESF policies exhibit a cut-off behaviour: the fraction
there is a 25% gap between the practical coding schemes and of time in outage drops rapidly from 100% to 0% when
the Shannon’s limit for the AWGN channel. Moreover, some  g|\R transgresses some critical values. This cut-off is

of the transmitted bits are used for signaling, which induce e strict for the optimal policy.
a supplementary capacity loss of about 30% (see {8&]). | £qr he traffic of 900 Erlang/kiy users with SINR 3dB

This made us assume = 0.5(= 0.75(1 — 0.3)) in (2). The are practically never in outage, when the optimal policy
system bandwidth i$V" = 10MHz. is used. The same holds true for users with SINRdB,

3) Streaming traffic:We assume that all calls require the  \hen the fair policy is used.
same streaming ratg = 256 kbit/s and have the same stream- , Wwhen the traffic drops to 600 Erlang/Rnthese critical

ing call time distribution. We Spllt them intd = 100 user values of SINR decrease mﬂB and5dB, respective|y,
classes characterized by values of the SINR falling inttedif for the optimal and the fair policy. Note that the fair

ent intervals regularly approximating the SINR domain from  policy is more sensitive to higher traffic load.

x1 = —10dB to x; = 17dB as explained in Section I1I-Al.

In our performance evaluation we will consider two values of srpe | £SF fair policy seems to be adopted in some implementtof
the spatially uniform traffic demand: 900 and 600 Erlangikmthe LTE.
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Fig. 5. Number of outage incidents as on Figure 4 for traffi@ Eélang/kn?.
2) Number of outage incidentdzigure 4 shows the mean
number of outage incidents per streaming cadl, evaluated some non-null “best effort” rates given by (5), unless they
using (9), in function of the SINR value characterizing slas are in deep outage — have SINR too small; cf Remark 2.4.
for the traffic 900 Erlang/kfand different policies LESE). Considering users in outage but not in deep outage as “par-
(Recall that we assume the same streaming time distributigaly satisfied”, increasing fairness margin allows to (at
for all users, and hencg; /i, = p; making the expression least) partially satisfy users with decreasing SINR values
in (9) depend only on the vector of traffic demand per clas€)oviously the level of the “partial satisfaction” dependstbe
Figure 5 shows the analogous results assuming traffic demanbughput obtained in outage periods, which is our quantit
of 600 Erlang/km. The main observations are as follows: of interest on Figure 7. It shows also two curves for all
« For all policies, the number of outage incidents (duringolicies LESRJ) assuming traffic 900 Erlang/kinThe upper
the service) is non-zero only for users with the SINRNes represent the mean total throughput realized duriag th
close to the critical values revealed by the analysis of ti§€rvice, normalized to its maximal value; i.€;,/(256kbit/s),
outage times. Users with SINR below these values alfe function of the SINR value characterizing class The
constantly in outage while users with SINR above theff@ctions of this throughput realized during outage pesjod
never in outage. Ty./(256kbit/s), are represented by the lower curves.
« More fair policies generate slightly more outage inci- Figures 7 and 6 teach us that the role of the LESF
dents. The worst values are 2 to 2.2 interruptions per caplicies withd > 0 may be two-fold.

for the optimal policy, depending on the traffic value, and o LESK) policies with small values of, e.g.d = 0.5,

2.4 to 3 interruptions per call for the fair policy. improve “temporal homogeneity” of service with respect
Studying outage times and outage incidents we do not see to the optimal policy, for users having SINR near the
apparent reasons for considering fair policies. This nabéis critical value. For example, a user having SINR equal
our study of the best-effort service in outage. to 1dB is served by the optimal policy during 80% of

3) The role of the “best effort” serviceFigure 6 shows time with the full requested streaming rate (cf. Figure 6).
the fraction of time spent in deep outage in function of the However, for the remaining 20% of time it does not
SINR, assuming traffic 900 Erlang/KmThese values should receive any service (deep outage, rate 0bits/s). The policy

be compared to the fraction of time spend in outage (for LESKO0.5) offers to such a user 80% of the requested
convenience copied on Figure 6 from Figure 2). Recall, users streaming rate during the whole streaming time (cf.
in outage do not receive the full requested streaming rate Figure 7), with no deep outage periods (cf. Figure 6). The
(assumed 256kbit/s in our example), however they do receive price for this is that a slightly higher SINR is required
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Fig. 6. Deep outage versus outage time. For any policy LESRvith  Fig. 8.  Impact of the deterministic arrival process (as caraeg to the
0 < § < oo, the left curve of a given style represents the fraction wfeti Poisson one) on the mean fraction of the requested streaimiegn outage,
spent in deep outage. The right curve of a given style retladisiraction of for the optimal and fair policy; traffic 900 Erlang/kKm

time spent in outage (already plotted on Figure 2). The agtpolicy (0 = 0)
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Fig. 7. Mean total throughput normalized to its maximal eal56kbit/s . . . .
obtained during the service time (upper curves) and itstitracobtained Simulations of the Poisson model confirm the results of the

when a user is in outage (lower curves) for different patidiESH6) traffic  theoretical analysis. Regarding the impact of the detastiin
900 Erlang/km. . . . . .
inter-arrival times a (somewhat expected) fact is that th@ o
to receive the full requested streaming rate (at least 5dBal policy remains optimal regarding the fraction of timeisp
instead of 3dB for the optimal policy). in the outage and the number of outage incidents. Another,
« The fair policy LESKoo) improves the spatial homogeneJeSS evident, observation is that the deterministic iaterals

ity of service It leaves no user in deep outage, howevéfore regular than in the Poisson case) i improve the
a much larger SINR 13dB is required for not to be situation forall classes of users. In fact, users with small

in outage (Cf Figure 6) Moreover, the throughput of a"alues of the SINR have smaller fraction of time in outage
users in outage but not in deep outage is substantiawder Poisson arrival assumption than in the determirostat
reduced e.g. from 80% to 40% for SINR1dB, with This is different from what we can observe for the blocking
respect to some intermediate LESF policies (with probability for the classical Erlang’s loss model; cf e.§3

0 < § < ). These intermediate policies can offefigure 8]. Moreover, the deterministic arrivals increabe t

an interesting Compromise between the Opt|ma||ty arﬂijber of outage incidents for intermediate values of the
fairness. SINR and decrease for extreme ones, especially with the fair

policy. Concluding these observations one can say however,

that the differences between Poisson and deterministinatre

formaqqe analy3|§ Of. the model presented in t_h|s paper\)gry significant and hence we conjecture that the Poisson
Insensitive to d'St.r |but_|on of the requ_ested streamlngasr_nn model can be used to approximate a more realistic arrival
this section we will briefly study the impact of a non Poisso Faffic.
arrival assumption. In this regard we simulate the dynamics

of the model with deterministic inter-arrival times (withl a

other model assumptions as before) and estimate the mean
fraction of time in outage., D), and mean number of outage In this paper, a real-time streaming (RTS) traffic, as e.g.
incidents M, for each class:. For the comparison, as wellmobile TV, is analyzed in the context of wireless cellu-
as for the validation of the theoretical work, we performoalslar networks. An adequate stochastic model is proposed to
the simulation of the model with Poisson arrivals. The rssulevaluate user performance metrics, such as frequency and

are plotted on Figures 8, 9 and 10, 11. Observe first that thember of interruptions during RTS calls in function of user

4) Impact of a non-Poisson-arrivalsRecall that the per-

IV. CONCLUSIONS
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service due to insufficient service capacity. We will evédua
key characteristics of this model using the formalism ofnpoi
processes and their Palm theory, often used in the modern
approach to stochastic networking [34]. Specifically, we ar
interested in the intensity of outage incidents, the megar-n
outage times and the outage durations of a given class, seen
from the server perspective, as well as the probability of
outage at the arrival epoch, mean total time in outage and
mean number of outage incidents experienced by a typical
user of a given class. The expressions developed for these
characteristics involve only stationary probabilities thie
(free) traffic demand process, which in our case is a vector
of independent Poisson random variables. Recall that such
a representation is possible e.g. for the well known Erlang-
B formula, giving the blocking probability in the classical
(possibly multi-class) Erlang’s loss model. Indeed, ourdeaio

can be seen as an extension of the classical loss model, where
the losses (i.e., service denials) are not definitive forvemi

call, but only temporal — having the form of outage periods.

A. Traffic demand

ConsiderJ > 1 classes of users identified with calls. We
assume that users of clagse {1,...,J} arrive in time
according to a Poisson process = {T)¥ : n} ® with intensity
Ar > 0 and stay in the system for independent requested
streaming timesiW* having some general distribution with

meanl/p;, < co. All the results presented in what follows do
not depend on the particular choice of the streaming time dis
tributions — the property called in the queueing-theorebic-
text insensitivity property Denote byN, = {(T*, W}) : n}

the process of arrival epochs and streaming times (call-dura

radio conditions. Despite some fundamental similariteethe
tions) of users of clask. We assume thaV/;, are independent
classical Erlang loss model, a new model was required fsr thi
acrossk = 1,...,J. Denote byXy.(t) = >, Lizx k1w (t)

type of service, where the service denials are not defiritive 2 . )
) : the number of users of clagspresent in the system at tinte
a given call, but only temporal — having the form of, hopefull ) d
: . . and let X (t) = (X1(¢),...,X,(t)); we call it the (vector
short, interruptions (outage) periods. Our model allowsk® ' . . : s
) S ) . of) user configuration at time. The stationary distribution
into account realistic implementations of the RTS serwicg, . . o
7w of X (t) coincides with the distribution of a vector of
in the LTE networks. In this latter context, several numaric :
.independent Poisson random variables,,..., X ) with

demonstrations are given, presenting the quality of serwc SheansE[Xy] == pr = Ae/p b = 1,2,...J. We call py
metrics in function of user radio conditions.
the traffic demandof classk.

We adopt the usual convention for the numbering of the
arrival epochsIy < 0 < TF. The same convention is used
with respect to all point processes denoting some time epoch

In this section we will present a general stochastic model fo
real-time streaming. An instantiation of this model wasdlise
the main body of the paper to evaluate the real-time stregmi
in wireless cellular networks. This model comprises Marko- For classk = 1,...,J, let a subset of user configu-
vian, multi-class process of call arrivals and their indegent, rations 7, ¢ N’ be given, whereN = {0,1,...}, such
arbitrarily distributed streaming times. These calls aevad that all X, users of classk present in the configuration
by a server whose service capacity is limited. Depending ¢f = (X1 ..., Xy,..., X ) are served if and only iX € F
numbers of calls of different classes present in the systeamd no user of clasé is served (we say it is imutagg if
the server may not be able to serve some classes of usersXIfZ Fi. We call 7. the kth class (service) feasibility set
such a congestion occurs, these classes are temporarigddeRenote byr, = n(F;) the probability that the stationary
the service, until the next call arrival or departure, whiea t configuration of users is ik th class feasibility set.
situation is reevaluated. These service denial periodiedca

outage periods, do not alter the call sojourn times in the
9€ p J fused withT, denotlng in the main stream of the paper (and in the proof

system. Our model allows for a very general service (OUtagﬁ roposition 2.3 at the end of the Appendix) the mean thnpug of user
policy saying which classes of users are temporarily dethied in classk.

0 e EE - :
-10-9-8-7-6-5-4-3-2-1 01 2 3456 7 8 91011121314151617
SINR [dB]

Fig. 11. Impact of the deterministic arrival process (as parad to the
Poisson one) on the mean number of outage incidents for thimapand
fair policy; traffic 600 Erlang/kr.

APPENDIX
A GENERAL REAL-TIME STREAMING (RTS)MODEL

I%. Resource constraints and outage policy

9The time instantsI* are used onIy in the Appendix and should not be
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We assume that, upon each arrival or departure of a user, th&) User metrics: We adopt now a user point of view on

system updates its decision and, for any clasi$ assigns the the system. We define for each cldss- 1, ..., J:
service to all users of clagsif the updated configuration of , The probability of outage at the arrival epoch for user
users is inFy. All users of any clasg for which the updated of classk

configuration is inF], = N7\ F;, will be placed in outage (at N
i i 1
least) until the next user _arr|val or departure. P = lim — Z Lp (X (TH) .
In what follows we will assume that no user departure N—oo N £~ 7%
can cause outage of any class of users i.e., switch a given h L time i f f clds
configuration fromF;, to 7. (However a user departure may ° € mean total time in outage of user of class

make some clasg switch from 7/ to F;.) 1 X
Denote byXy(t) := Xi(t)15, (X (t)) the number of users De = Jim — Z /[Tk Th4WE) L7 (X (2))dt.

of classk not in outageat time t. Denote by X (t) = n=l T T
(Xi(t),...,X;(t)) the configuration of usersot in outage « The mean number of outage incidents experienced by user
at timet. of classk after its arrival

1 N

M= lm — DD L ariwr ().

C. Performance metrics I R

Note that eventual outage experienced at the arrival of
a given user is not counted M. The mean total
number of outage incidents (including possibly at the
arrival epoch) is henc}, + M.
For a given classk = 1,...,J, denote bye, =
(0,...,1,...,0) € N/ the unit vector having its:th com-

In what follows we will be interested in the following
characteristics of the model.

1) Virtual system metricsDuring its time evolution, the
user configurationX (¢) alternates visits in the feasibility set
Fi. and its complemenf,, for each clas& =1,...,J. We
are interested in the expected visit durations in thesesaset )
well as the intensities (frequencies) of the alternationsre PONeNt equal to 1. Hence + ¢, represents adding one
formally, for each giverk = 1,...,.J, we define the point YS€' of classk to the configuration of users < N’
process. = {r; :n) of exit epochs o 1) rom 7is e, 2R DS e e eation. Reallhat
all epochst such that(X(t—),X(t)) € Fi x F. (with the m{x € -} =P{X(t) € -} is the distribution of the stationary
conventionry < 0 < 7f). These are epochs when all USergonfiguration of usersX (¢) (it corresponds to independent
of classk present in the system (if any) have their servicpoisson variables of mean,).
interrupted.

Denote byo’* := sup{t — ¥ : X (s) € F| Vs € [7F,t)}
the duration of the: th visit of the processX (¢) in F; and D. General res.ults _ _ _
by ok := 7, — 7% — /¥ the duration of the: th visit of the We present first results regarding the virtual system neetric

n

processX (t) in Fj. We define for each clags=1,...,J:  These results will be next used to evaluate the user metrics.

The intensity of out incidents of clasg.e.. th Lemma A.1l: The intensity of outage incidents of cldsss
« The intensity of outage incidents of cldss.e., the mean p_,, 0 surely equal to

number of outage incidents of this class per unit of time

J
) . 1 L Ak:Z/\jW{CBE.Fk,.’B-FEjG]‘—;C} k=1,...,J.

Proof: Let N = Z}-]:1 N, be the point process counting

ObviouslyA;, is also the intensity of entrance to théh  yhe 4rrival times of users of all classes. By independence,

class feasibility_seﬂ. o N is the Poisson point process of intensiy= Ztl Aj.
« The mean service time between two outage incidents§fa, by the ergodicity of the proce$sX(t) : ¢} and the
classk fact that the exits froniF;, can take place only at some user
. 1 & & arrival epoch we have by the Campbell’s formula [cf. e.g. 34,
Th= NN z:l Tn - Equation (1.2.19],
» The mean outage duration of claks A, =E / L xr (X (=), X (¢) N (dt)
[0,1)

N . 0 _ ,
o= lim =3 otk = AP} {X(0-) € Fi,, X(0) € F1}
Novoo N n=1 where P‘}v designates the Palm probability associated\to
: - e _ (which is, roughly speaking, the conditional probabilifyen
Note that the above metrics characterize a “virtual” qyadit 5 arrival at tim &0). By PASTA (Poisson Arrivals See Time

the service, since some visits /. and 7, may occur when ayerages) property [cf. 34, Equation (3.3.4)] the configiora
there is nok th class user in the system (in the latter case the

outage of this class is not experienced by any user). Owith Zp = (X (Tn =), X(Tn)) and f(t, z) = Ljo,1) ()1 7, 77 (2)
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of users X (0—) under P}, has distribution7. Moreover, which completes the proof. [ |
X(0) = X(0—) + e where¢ € {1,...,J} is underP% Proposition A.5: The mean number of outage incidents
independent ofX (0—) and takes valuej with probability experienced by user of clagsafter its arrival is P-almost
Aj/A. This completes the proof. B surely equal to

Lemma A.2: The mean service time between two outage 7

incidents and the mean outage duration of cldssre P- M, =— Z)\jﬂ{w ten €Fpx+er+e; € FL), (A7)
k

almost surely equal to, respectively, =

! —
O’k:ﬂ—(]:k), &;::W(fk) k=1, .. k=1,....J.
A A Proof: Again using the ergodicity of X (¢)} we know
where Ay, is given in Lemma A.1. that, P-almost surely,
Proof: First we prove the expression fer. By ergodicity
o, = E% [of] P-almost surely, wher&Y, designates the M, = E% / By (dt)
expectation with respect to the Palm probability assodiate "oy

to By, andEY, [7§] = 1/A;; [see e.g. 34, Equation (1.6.8) . i . 0
and Equation (1.2.27)]. Applying the mean value formul&[se'JSIng the fact thaiVy" andY'(t) are independent undaty,

. 0 P .
34, Equation (1.3.2f] we getn(Fx) = AyE%, [o4], which with B, [Wg'] = 1/ we obtain

complet_es the proof of thel expression for. For the;kother M, = E [Bk(o W’“)} _ AL
expression, note by the definition of the sequener’* and Nk o e

k - - . . . .
7, thatP-almost surely, where A is the intensity of the point process of exit epochs

1 w(Fr) w(F,) of X(t) from Fy = {x: x+¢e, € Fi}. Using Lemma A.1

o), = E%k [G{ﬂ = E%k [le — 0'15

= Ar A A, With 7 replaced byF;; concludes the proof. [ |
We will now prove the result regarding the throughput of
the typical call of clasg.
Proof of Proposition 2.3: We have

which completes the proof.
Proposition A.3: The probability of outage at the arrival
epoch for user of clask is equal to

P, =7n{x+e,cF.} k=1,...,J (16) Tk:T;f:ukE?vk / r (X (t) € FP)

P-almost surely. ‘s 5

Proof: By ergodicity we haveP;, = PQ, {X(0) € F;}, + e (X (E)L(X(t) € Fi) dt} :
WherePg)Vk designates the Palm probability associatedvio
(arrival process of the users of claks By PASTA property
the configuration of userX (0—), just before arrival of the
user of class: at time 0, has distributionr. Once the user T = E [r,‘;(X(t) Fe)I((X(1) +er) & ]-",f)} (18)
enters the system, the users configuration becak@s-) +

It is easy to see, as in the proof of Proposition A.4, that=
rpm{x +ex € Fp } + T}, where

er, Whence the result. m is the part of the throughput obtained by user of clasisiring

Proposition A.4: The mean total time in outage of user ofts outage time. u
classk is P-almost surely equal to
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