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Abstract—This paper deals with the performance evaluation of
wireless cellular networks serving streaming traffic. In contrast
to data traffic, streaming users require predefined transmission
rates, which can be maintained at the price of blocking of some
arrivals or cutting some existing connections when a network
congestion occurs. The fractions of blocked and cut transmissions
in the long run of the system, called respectively, blocking and
cut probabilities, are the main performance metrics of such
networks. In this paper we evaluate the impact of the intra-
and extra-cell user mobility on these metrics. Specifically, we
assume a spatio-temporal Poisson arrival process of streaming
calls, independent Markovian mobility and exponential duration
of each call. The dynamics of this free (offered) process is
modified each time a congestion-generating transition occurs. We
consider two possible modifications, which lead to two different
loss models. We study both of them, and in particular, we
propose some explicit approximations for the blocking and cut
probabilities, which take into account the mean user mobility
speed. We illustrate our approach studying UMTS release 99
building upon the scalable admission control schemes developed
in [1], [2], which allow for an exact representation of the geometry
of interference in the network.

I. INTRODUCTION

Cellular networks provide streaming services (voice calls,
video streaming, etc.), which require predefined transmission
rates, and carry elastic (data) traffic, which accepts fluctuations
of the rates. In this paper we focus on streaming that represents
an important fraction of the traffic in real life networks.
The fixed rates of streaming can be maintained in a shared
medium at the price of blocking of some arrivals or cutting
some existing connections when a network congestion occurs.
Obviously, the fractions of blocked and cut connections, which
are important performance metrics for such systems, should
be kept small, typically � 10%. Analytical study of these
metrics can help to satisfy this objective when planning
and/or dimensioning of the network. The general objective of
this paper is to propose a simple, yet adequate method for
the evaluation of blocking and cut probabilities in cellular
networks with streaming mobile traffic. In particular we want
to capture the impact of the user mobility speed on these
performance characteristics.

In order to identify congestion epochs, which may lead to
blocking or cuts of some users in wireless communication
networks, one has to take into account the geographical
locations of users and the configuration of powers allocated
to them. These powers create the interference at the receivers
and thus determine the feasible transmission rates. Assuming
geographical user mobility essentially complicates this task.
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In particular, a call (voice call, video streaming, etc.) can
be rejected (blocked) when it is arriving to the network but
also prematurely terminated (cut) when the user moves. This
latter can happen not only when the mobile changes its cell
(handoff ) but in principle also even if it only moves away
from the serving base station while staying in the same cell.
One may reasonably expect that longer distances traversed by
mobiles during the calls (which is obviously related to the
user speed) will cause more call cuts. On the other hand,
cutting calls in progress reduces the global charge of the
network and presumable increases the chances of new arrivals
to be accepted. In this paper we verify this reasoning and
try to explicitly quantify the dependence of blocking and cut
probabilities on the mean user mobility speed.

We already said that in wireless networks it is the ge-
ographic location of mobile users that determines the joint
feasibility of streaming rates. A very intrinsic way of catching
this phenomenon, called power allocation problem, can be
formulated as follows: a given configuration of users which
requires some given bit-rates is feasible if there exists some
vector of emitted powers which guarantee that the Signal-to-
Interference-and-Noise-Ratio (SINR) at each receiver exceeds
some threshold related to the required bit-rate of the associated
channel (given particular coding, modulation and decoding
scheme). Even if in practice additional or different feasibil-
ity criteria may be implemented in the network controllers
(for example based on the maximal emitted power, maximal
number of users in each cell, etc.), the above one is universal
(does not depend on particular manufacturers’ algorithms) and
exploits the theoretical limits for the network capacity.

Solving the above power allocation problem is a very
difficult, highly centralized problem. So, in this paper we study
blocking and cut probabilities for some particular feasibility
criteria build upon the scalable admission control schemes
developed in [1], [2]; they are based on an exact representation
of the geometry of interference and ensure that the associated
power allocation problems have solutions.

More precisely, we consider a model in which calls arrive to
some subset of the plane, representing the multi-cell network,
and are subject to some completely independent Markovian
mobility during the service. The dynamics of this free process
is modified each time an arrival or displacement makes the
new configuration of users non-feasible (i.e.; not belonging to
a given set of feasible configurations). New arrivals in such
situations are simply not allowed to enter the system and lost.
As far as displacement is concerned, we consider two possible
modifications of the free process, which lead to two different
loss models. The transition blocking model (TB), assumes
that the moving call in question is immediately taken back
to its previous position and the process evolves according to
its “free” dynamics. The other one, called forced termination



model (FT), assumes that the moving call is prematurely
interrupted (cut).

The models TB and FT are obviously equivalent when
there is no user mobility. The TB model is more natural
if users backtrack when the quality of their calls becomes
unacceptable. It will be mathematically analyzed. The FT
model (at a non-null speed) will be simulated only as it is
mathematically less tractable. In both models we observe the
effect of user mobility on the quality of service.

More precisely, in the TB model, we establish analytical
expressions for the (access) blocking probability that under
some quite natural assumptions does not depend on the mean
user speed. In this model we also analyze the mean number
of blocked motions per call.

For the FT model, in which, besides call (access) block-
ing, one observes call cuts, we discover by simulation that
the blocking probability decreases, while the cut probability
increases when the mean user speed increases. Moreover, the
sum of these two probabilities remain roughly constant, and
for a moderate speed is well approximated by the blocking
probability in the motionless case. We also show that for
such a speed the cut probability is well approximated by a
normalized version of the mean number of the motion blocking
per call evaluated for the corresponding TB model. Finally,
combining the above two observations we approximate the
blocking probability in the FT model by the difference: of
the blocking probability evaluated at the null speed and the
normalized mean number of the motion blocking per call. We
validate the above approximations studying UMTS release 99.

The remaining part of this paper is organized as follows.
In Section II we briefly review the related work and position
our contribution in this context. Section III introduces basic
notions and tools. In section IV we describe and analyze
the TB and FT model. In particular in Section IV-C we
introduce our explicit approximations for the blocking and cut
probabilities in the FT model. In Section V we develop our
main example — analysis of the streaming in the large CDMA
networks. We conclude in Section VI. Appendix contains some
more technical elements of our mathematical analysis.

II. STATE OF THE ART, RELATED WORK

A large part of the existing literature on performance of
cellular networks considers either a random (typically Pois-
son) snapshot of the population of users ([3], [4]) or some
Markovian dynamics of arrivals and departures of motionless
users ([5], [6], [7], [8]). In the first case only feasibility
probability can be defined, while in the second one blocking
probabilities can be studied. In rare articles considering a
mobile population of users, where cut probability may be
defined, and going further than a pure simulation analysis,
the geometry of interference is typically absent or seriously
simplified. The most common assumption is that inter-cell
interference is proportional to intra-cell interference. This
leads to models where only the number of calls per cell (and
not their geographic positions) is relevant. Examples of such
studies are [9], [10]. In [10] and [11] the cut probability
is evaluated considering a “phantom” mobile moving in the
network, which does not affect its state.

In [9], which is the most relevant to our approach, two
QoS indicators are defined: new call blocking probability and
handoff blocking probability. Explicit expressions for these
indicators are given for two limiting regimes: no mobility
and infinite mobility. Approximations are also given for in-
termediate mobility regimes. These approximations are based
on the study of some special and rather simplistic network
architectures (e.g. cells located on a ring or on the line).

In [10] two QoS indicators are defined: blocking probability
and forced termination probability. Erlang fix point approxi-
mations are used to calculate these probabilities numerically.
In [12] upper bounds for the blocking and outage probabilities
are derived under a certain monotonicity property.

A. Our contribution

Our model allows to represent in an exact way the geometry
of inter-cell and intra-cell interferences. We construct it using
the spatial Markov queueing setting ([13]) that, we believe,
is more natural in the wireless communication context. At
least it allows to simplify many expressions, which in clas-
sical Markov approach take complex forms if one wants to
discretize reasonably the network geometry.

We identify the feasible configurations of users via the
decentralized schemes developed in [1], [2]. This allows to
evaluate blocking and cut probabilities for very large (the-
oretically infinite) cellular networks. This approach is also
strongly related to universal (i.e.; not depending on particular
manufacturers’ algorithms) theoretical limits for the network
capacity based on the feasibility of the power allocation.

In this context, we establish explicit approximations of the
blocking and cut probability as functions of the average speed
of users. These approximations are shown to be valid up to a
reasonable speed.

This paper complements [8], where blocking probabilities
without user mobility were studied via a spatial Erlang formula
and [14], where the decentralized congestion control schemes
were studied in the context of data traffic.

III. PRELIMINARIES

A. Point process description of the system state

Consider a space D that is always in this paper a subset of
the plane R

2. Elements x ∈ D denote geographic locations of
users in the system. Configurations {xi} ⊂ D of users in the
system are identified by corresponding counting measures µ =∑

i εxi
; where the Dirac measure εx is defined by εx(A) = 1

if x ∈ A and 0 otherwise, consequently µ(A) is the number
of users in the set A ⊂ D. We denote by M the set of all finite
configurations of users (i.e., finite counting measures) on D.

B. Spatial Markov queueing process

We will describe the temporal evolution of the configuration
of users in D by a pure jump Markov process, which takes
values in M. A general class of such processes, called Spatial
Markov Queueing (SMQ) was proposed in [13]. This process
evolves because of users arriving, moving or leaving the
system, with only one such event being possible at a time.
Special cases of SMQ processes are Spatial Birth-and-Death
and Markov Poisson Location (MPL) processes where users
arrive, move and leave the system independently of each other.
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C. Free (MPL) process

The process describing the evolution of the mobile stream-
ing users in the absence of any loss-generating constraints
is called free process. A natural candidate in the context
of wireless communications is the MPL process. Here we
describe its dynamics more precisely.

1) Arrivals, holding times and service rates: For a given
subset A ⊂ D inter-arrival times of users to A are independent
of everything else, exponential random variables with mean
1/λ(A), where λ(·) is some given intensity measure of arrivals
to D per unit of time. In homogeneous traffic conditions, we
take λ(dx) = λdx, where λ is the mean number of arrivals per
unit of area and per unit of time. We always assume λ(D) < ∞
(thus, in homogeneous case, D is a finite subset of the plane).

We assume that each arrival stays in the system during
some exponentially distributed service time (streaming or
call holding time during which some given transmission rate
should be sustained) with parameter τ > 0. There is no
queueing. (The exponential assumption can be relaxed in the
subsequent analysis of the transition blocking in the MPL
model due to the so-called insensitivity property.)

2) Mobility: Assume that users move independently of
each other in D. The sojourn duration of a given user at
a location x ∈ D is independent of everything else (in
particular of the amount of the service already received) and
exponentially distributed (cf [15]) with parameter λ′(x). Each
user finishing its sojourn at location x, is routed to a new
location dy according to some probability kernel p′(x,dy),
where p′(x, D) = 1. The above description corresponds to a
Markov process on D with the following generator (of the
individual user mobility): λ(x,dy) = λ′(x)p′(x,dy). We will
always assume that this Markov process is reversible and
ergodic and will denote its invariant distribution by �(·); it
satisfies the following balance equations: �(D) = 1 and∫

A

λ(x, D) �(dx) =
∫

D

λ(x,A) �(dx) , A ⊂ D . (3.1)

3) Stationary distribution of the free process: Under the
above assumptions the MPL process is reversible and ergodic
([16], [17]). The configuration of users converges weakly to
the unique stationary distribution Π, that coincides with the
distribution of a Poisson point process on D of intensity ρ(·)
satisfying the following system of traffic equations for A ⊂ D

λ(D) = τρ(D) (3.2)∫
A

λ(x, D) ρ(dx) + τρ(A) =
∫

D

λ(x,A) ρ(dx) + λ(A) .

In order to study the general impact of user speed on
the performance of the loss system we will multiply the
displacement rates λ′(·) of all users by a common factor v ≥ 0
that we will interpret as the average speed of users.

Remark 3.1: Note that the solution � of (3.1) is invariant
with respect to v. Moreover, if the arrival intensiy λ(·) is
proportional to �(·), i.e.; if �(·) = λ(·)/λ(D) then the solution
ρ of (3.2) is equal to ρ(·) = �(·)λ(D)/τ and thus it is also
invariant with respect to v. Consequently, the stationary distri-
bution Π of the free process with arrival intensity proportional
to the invariant distribution of the user mobility does not
depend on the average mobility speed v.

D. Modeling losses

Consider a SMQ process describing a free evolution of the
system, e.g. the MPL process described in the previous section.
Suppose that the “true” evolution of the system is subject to
some constraints, which can be expressed as the limitation of
the original state space of all configurations M of users, to
a given fixed subset M

f ⊂ M of feasible configurations. We
will always assume that M

f has the following monotonicity
property: if a configuration µ is feasible (µ ∈ M

f ) then any
subset ν ⊂ µ is also feasible, i.e.; ν ∈ M

f .
Examples of M

f useful in modeling of wireless communi-
cation systems are presented in Section V-A2. We remark here
only that in general, the feasibility condition (i.e.; the condition
for µ ∈ M

f ) depends not only on the total number of users
µ(D) but also on individual user locations. Note also that the
monotonicity property of M

f implies that all user departures
preserve the feasibility of configurations.

We assume that the “true” system with losses, started at an
initial state in M

f follows the same dynamic as the free process
as long as it stays in M

f and is forced to modify its behaviour
each time an attempt of a transition from M

f to M\M
f occurs.

In the next section we will consider two possible modifications
applied at such epochs. They lead to two different models, one
of which (suitable if users backtrack when the quality of their
calls becomes unacceptable) is analytically tractable, the other
is more difficult to analyze. Studying both of them we will be
able to propose some explicit formulas for evaluation of the
loss (blocking and cut) probabilities.

IV. TWO SPATIAL LOSS MODELS

In this section we describe and analyze two models, which
consist in two different modifications of the free process dy-
namics making it stay in the set M

f of feasible configurations.
For simplicity we restrict ourselves to MPL process as the free
process. More general scenario is considered in the Appendix.
The main results concerning approximations of blocking and
cut probabilities are given in Section IV-C.

A. Transition blocking (TB) model

In this model the free process is modified to stay in M
f by

applying transition blocking for the admission as well as for
displacements. More precisely, the following rules are applied
when an attempt of a transition from M

f to M \ M
f occurs.

(TB1): Any call arrival that would result in taking the
process to a state outside M

f is not allowed to enter to the
system (lost) and excluded from its further evolution.

(TB2): Any displacements of a user in the system that
would take the process to a state outside M

f is ignored;
the user in question is instantaneously taken back to his
previous location and the system keeps on evolving with this
user according to the free dynamics until the next attempt to
leave M

f .
The above modification of the free process evolution cor-

respond to the so called truncation of its generator (see
Appendix).

1) Stationary distribution of the TB process:
Fact 4.1: The TB of the MPL model leads to a reversible

and ergodic process, whose stationary distribution Πtb is equal
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to the truncation of Π to M
f ; i.e.; for any subset Γ ⊂ M of

user configurations Πtb(Γ) = Π(Γ ∩ M
f)/Π(Mf).

Proof: The MPL (free) process is reversible with re-
spect to its stationary distribution Π, then the result follows
from [13, Proposition 3.14].

2) Blocking probabilities in the TB model and a spatial
Erlang formula: We define the blocking probabilities in the
TB model by the following ergodic limits

btb = lim
t→∞

#{blocked arrivals in [0, t]}
#{all arrivals in [0, t]} .

where # denotes the cardinality and [0, t] designates a time in-
terval. One can also consider the blocking probabilities inside
the system, i.e.; the ratio the number of blocked displacements
with respect to the number of all displacements of users in
the system. However this characteristic is not pertinent in our
analysis. Instead we define the following mean number of
motion blocking per call

dtb = lim
t→∞

#{blocked displacements in [0, t]}
#{non-blocked arrivals in [0, t]} .

Both btb and dtb admit some more explicit expressions in
terms of the stationary distribution Πtb. These formulas are
derived in the Appendix. In particular, the following formula
can be seen as a spatial extension of the well known Erlang
formula. It follows from Proposition A.2.

Corollary 4.2: btb =
∫

D
ptb(y)λ(dy)/λ(D) where ptb(y) =

Π{µ ∈ M
f : µ + εy �∈ M

f}/Π(Mf).
The analogy to the Erlang formula consists in expressing

the intensity ptb(y) of blocking of users arriving at y ∈ D by
the conditional probability that the stationary configuration
of users in the free (here Poisson) process cannot admit a
new user at y given the configuration is in M

f . The above
result was used in [8] to evaluate the blocking rates in CDMA
without user mobility.

Remark 4.3: Note by the above corollary and the Re-
mark 3.1 that if the arrival intensity is proportional to the
invariant distribution of the user mobility, then the blocking
probability btb does not depend on the user speed v.

The following Corollary follows from Proposition A.3.
Corollary 4.4: dtb =

∫
D×D

Π{µ ∈ M
f : µ + εx ∈ M

f , µ +
εy �∈ M

f}λ(x,dy)ρ(dx)/(Π(Mf)τ
∫

D
(1 − ptb(x)) ρ(dx)).

The proof is given in the Appendix. Note that dtb depends
on v even if Π is invariant with respect to v. In fact, in this
case dtb increases linearly in v as a consequence of the linear
dependence of λ(x,dy) on v.

In some cases the value Π{. . .} in the formula for dtb given
in Corollary 4.4 can be evaluated more explicitly.

Corollary 4.5: If Πtb
(
N + δx ∈ M

f , N + δy �∈ M
f
)

=
Πtb

(
N + δx ∈ M

f
)
Πtb

(
N + δy �∈ M

f
)
, which is the case

e.g. when M
f is in the form (5.3) then dtb =

∫
D×D

ptb(y)(1−
ptb(x))λ(x,dy)ρ(dx)/

∫
D

τ(1 − ptb(x)) ρ(dx).

B. Forced termination (FT) model

In this model the dynamics of the free process is modified
according to the following rules when an attempt of a transi-
tion from M

f to M \ M
f occurs.

(FT1): Any call arrival that would result in taking the
process to a state outside M

f is not allowed to enter to the
system and excluded (lost) from its further evolution.

(FT2): Any displacements of a user in the system that
would take the process to a state outside M

f leads to the forced
termination (cut) of the call of this user, i.e.; rejection of this
user from the system and from its further evolution.

Each time the rule (FT1) or (FT2) is applied we say that
the corresponding user (call) is lost.

1) Blocking and cut probabilities in FT model: The FT of
the MPL model is ergodic (this and all the statements on the
FT models are proved in [17], see also [16]). Lets denote
by Πft the stationary distribution of the FT process; it can
be characterized by the so called cycle formula. The main
disadvantage of the FT model is that Πft cannot be expressed
more explicitly even in the simplest examples.

Our main performance metrics of the FT model are blocking
and cut probabilities defined respectively by the following
ergodic limits

bft = lim
t→∞

#{blocked arrivals in [0, t]}
#{all arrivals in [0, t]} ,

cft = lim
t→∞

#{forced call terminations in [0, t]}
#{non-blocked arrivals in [0, t]} ,

which exist and can be expressed in terms of the stationary
distribution Πft. However, since this distribution is typically
not known explicitly, the FT blocking and cut probabilities
are studied by simulation. Examples of numerical results are
presented in Section V-C. The following conclusion can be
derived from these simulations.

Observation 4.6: In the FT model with M
f of the form (5.2)

or (5.3) the blocking probability decreases as a function of user
mobility speed v, while the FT cut probability increases in v,
in such a way that their sum remains roughly constant, at least
for small and moderate v.

C. Approximations

In this section we propose some approximations of the
blocking and cut probabilities in the FT model, which can
be calculated using the TB model. These approximations
are heuristic, but useful, as shown in Section V where the
numerical results are presented.

1) Approximating cut probabilities: Our approximation for
the cut probability is based on the mean number of motion
blocking per call dtb and the following intuitive reasoning:
dtb should be close to cft when this latter is small, while
it tends to infinity when cft tends to 1. Bearing in mind the
above idea we propose to approximate cft by the following
normalized number of motion blocking per call

cft ≈ ctb :=
dtb

1 + dtb
. (4.3)

The quantity cft can be seen also as a “fictitious” cut proba-
bility defined in the TB model (note that in this model there
are no “real” call cuts).

2) Approximating blocking probabilities: Our approxima-
tion for the blocking probability is based on Observation 4.6,
which says that bft + cft is approximately independent of
mobility speed v at least for small and moderate values of v.
Considering the null speed, one concludes that bft + cft ≈ b0,
where this latter denotes the (access) blocking probability
evaluated for v = 0 (equivalently in TB or FT model). Bearing
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on mind the above reasoning and the approximation (4.3) we
propose to approximate the blocking probability in the FT
model by the following formula

bft ≈ b0 − ctb . (4.4)

V. STREAMING IN CDMA

In this section we will show how the ideas developed in the
previous section can be used to analyze the performance of the
UMTS release 99 cellular network. We consider a large multi-
cellular network serving streaming users, which are subject to
inter- and extra-cell (handoffs) mobility.

A. Network topology and feasible configurations of users

1) Hexagonal cell pattern: We consider the most popular
hexagonal model, where the base stations are placed on a
regular hexagonal grid. Let R be the radius of the disc whose
area is equal to that of the hexagonal cell served by each base
station, and call R the cell radius. Bearing in mind the above
pattern of base stations, one can consider D =

⋃
u Cu, where

Cu ⊂ R
2 are hexagonal cells constituting the network.

2) Feasible configurations: It is natural to identify the
feasible configurations of users in the network D studying the
feasibility of power allocation problem (cf. Introduction). In
this approach, a given configuration of users with predefined
bit-rates is feasible if there exists some vector of emitted
powers which guarantee that the Signal-to-Interference-and-
Noise-Ratio (SINR) at each receiver exceeds some threshold
related to the bit-rate of the associated channel. However,
solving the power allocation problem for a large network is a
very complicated task.

a) Sufficient condition: A sufficient condition for the
feasibility of power allocation is derived in [1], [2]. The
verification of this condition is decentralized in the sense that it
can be implemented in such a way that, for a given architecture
of the network, each base station u only has to check whether
the following inequality holds for the users of its own cell∫

Cu

ϕu(x)µ(dx) =
∑

xi∈µ∩Cu

ϕu(xi) < Cu , (5.1)

where Cu is some constant, ϕu(·) is some nonnegative func-
tion of the user x ∈ Cu location and the service rate (see [17,
Prop. 57, p. 226]) and the integral with respect to the counting
measure µ(dx) in Cu denotes summation over all users xi in µ
present in cell Cu. The above approach suggests the following
conservative choice for the set of feasible configurations M

f

of users in the geometric model D =
⋃

u Cu of the network

M
f = {µ ∈ M :

∫
Cu

ϕu(x)µ(dx) < Cu ∀cell u} . (5.2)

b) Erlang-type condition: Recall that in the steady state
of MPL model users are distributed according to a Poisson
point process (see Section III-C3). This means that the number
of terms µ(Cu) in the sum/integral in (5.1) and (5.2) has a
Poisson distribution, and that given this number, the individual
terms ϕu(xi) are i.i.d. random variables. In this case, discre-
tyzing Cu (e.g. partitioning it into several rings around the
base station) and applying the linear regression of the sum∑

xi∈µ∩Cu
ϕu(xi) versus the number of users in each element

of the partition one can reduce the geometric model to some
multi-rate model, in which the blocking probability can be
evaluated e.g. via the Kauffman-Roberts algorithm ([18]). In

the most simple case, when Cu is not partitioned at all, the
linear regression with respect to µ(Cu) leads to the following
Erlang-type approximation of M

f

M
f = {µ ∈ M : µ(Cu) ≤ C/ϕ̄u∀cell u} , (5.3)

where ϕ̄u =
∫
Cu

ϕu(x) ρ(dx)/ρ(Cu) denotes the mean value
of ϕu(x). In this case the geometric model boils down to a
discrete one.

c) Other conditions: The above models of M
f are based

on the theoretical analysis of the power allocation problem.
For some particular network controllers one can also consider
really implemented admission and congestion control algo-
rithms and derive corresponding feasible user locations. Most
of such algorithms are based on the total emitted power which
is required to be at most half of its maximal value.

Note also that our theoretical analysis is derived for the net-
work equipped with matched filter receivers. More advanced
reception techniques (e.g. successive interference cancellation)
will lead to different (less constraining) sets M

f .
3) Decentalizing large network: It can be shown in the

hexagonal network that functions ϕu(·) do not depend on u
provided cell u is not on the border of the network (precisely,
the value of the interference factor f comprised in ϕu(·)
given in [17, p. 217] is practically determined by 4 rings of
neighbouring cells). It is reasonable to assume similar property
for the mobility model λ(x,dy). Studying the performance of
a large network, one can ignore the border effects and consider
the network that is “wrapped around”; i.e., deployed on a torus.

Moreover, in the case of M
f given by (5.2) or (5.3) blocking

rates ptb(y) can be evaluated studying only the cell to which
belongs y. Similarly, Corollary 4.5 shows that for a symmetric
network (as a toroidal one) and the mobility model that allows
only for local handoffs, mean number of blocked motions
per call dtb can be mathematically evaluated studying a
single (call it “typical”) cell of the network with its direct
neigbours. Similar conclusion can be drawn for a large “flat”
(not toroidal) network using spatial ergodic arguments.

B. Model specification

1) Network architecture: We consider a cell radius R =
1km and take 4 × 4 = 16 toroidal cell model.

2) Arrivals and call duration: We take mean call duration
1/τ = 2min. We assume the (spatially) uniform arrival stream
λ(dx) = λdx with λ varying such that the traffic demand
λπR2/τ varies from 0 to 120 Erlangs per cell.

3) User mobility: We assume a simple completely aimless
Markovian mobility model ([19], [20]) that yields the uniform
stationary distribution � of user location in the network. In
view of the above arrival/call duration specification it implies
also the homogeneous solution of the traffic equations (3.2)
of the form ρ(dx) = λ(dx)/τ (see [17] for more details). We
will consider three mobility regimes with mean user speed
v = 0.1, 1, 10 km per mean call duration, which correspond,
respectively, to 3, 30 and 300 km/h when the mean call
duration is 1/τ = 2min.

4) Other parameters: We assume a path loss L(r) =
(Kr)η , with η = 3.38, K = 8667. We consider voice calls
with SINR threshold −16dB. We take an orthogonality factor
(for intracell interference) 0.4, maximal power 52dBm and the
ambient noise power −103dBm.
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Fig. 1. Left: Study of the blocking probability btb and the mean number of
motion blocking per call dtb in the TB model. Right: sum of the blocking
and cut probability simulated in the FT model.
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Fig. 2. Study of the FT model.

C. Numerical results

1) Study of the TB model: Figure 1 (left) shows the block-
ing probability btb and the mean number of motion blocking
per call dtb in the TB model under null and a pedestrian user
speed (when it is reasonable to assume that users backtrack).
The analytic curves are obtained from our explicit formulas.
As expected in this model, the blocking probability does not
depend on the speed.

2) Study of the FT model: Note first on the Figure 1 (right)
that the sum of the blocking and cut probability in the FT
model is nearly independent of the speed. Next, simulated
data on Figures 2 (left and right) show that blocking proba-
bility decreases while the cut probability increases when the
mean user speed increases. These figures show also heuristic
approximations of these performance metrics of the FT model
described in Section IV-C and obtained via the corresponding
TB model. These approximations seem to be accurate up
to a moderate vehicular user speed of 30km/h or when the
blocking/cut probability is less than 0.05 that is a reasonable
threshold for real networks.

VI. CONCLUDING REMARKS

In this paper we have proposed two models allowing to
study the impact of user mobility on the performance of cel-
lular networks serving streaming traffic. In the model without
backtrack (with call cuts) we have observed that the blocking
probability decreases as a function of user mobility speed,
while the cut probability increases, in such a way that their
sum remains constant for small and moderate mobility speed.
In the model with backtrack we have explicitly expressed
the blocking probability and the mean number of motion
blocking per call. We have also shown how the performance
metrics of the former model can be explicitly approximated
via the analysis of the later one. We have validated this
approach studying the UMTS release 99 cellular network
serving voice traffic under completely aimless mobility model.
Similar approach can be used to study OFDMA networks. An

interesting open question is the impact of the particular form
of the mobility model on blocking and cut probabilities.
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APPENDIX: MATHEMATICAL BACKGROUND

In this section we prove a few results for the TB model,
which are used in the paper. More on the TB and FT model
can be found in [16], [17].

As usually one introduces a “virtual” state o �∈ D which can
be seen as a location outside the space D, from which users
arrive to the system and which represents the destination of
the users leaving the system. Denote D = D ∪ {o} and M

the set of finite counting measures on D. Define the following
displacement operator T on the space M for ν ∈ M, x ∈
ν, y ∈ D: Toyν = ν + εy , Txoν = ν − εx, and Txyν =
ν − εx + εy . It is customary to define also TABν =

{
Txyν :

x ∈ A, y ∈ B, x �= y
}

for A,B ⊂ D̄, ν ∈ M.
Consider a SMQ generator q ([17]) representing a free

process, with the routing kernel λ(x,A) (x ∈ D, A ∈ D̄)
(with 0 ≤ λ(x, D) < ∞ and λ(x, {x}) = 0 for all x ∈ D)
and the departure-arrival rate r(ν, Txyν) (x, y ∈ D, ν ∈ M)
for the displacement form x to y. In what follows we always
assume that 0 ≤ r(ν, Txyν) < ∞ for all ν ∈ M, x, y ∈ D and
x ∈ ν or x = o.

Consider a fixed (measurable) subset M
f ⊂ M of feasible

states. We assume that if µ ∈ M
f then for any ν ⊂ µ one has

ν ⊂ M
f (we called this monotonicity property of M

f ).
The dynamics of the TB process (cf Section IV-A) related

to the free process given by the generator q corresponds to the
following truncation of q: qtb(ν,Γ) = q(ν,Γ∩M

f) if ν ∈ M
f

and q(ν,Γ) otherwise. One can show (see [17]) that qtb is
also a SMQ generator, with the same routing kernel λ and
the departure-arrival rates rtb(ν, Txyν) = r(ν, Txyν)1(Txyν ∈
M

f) if ν ∈ M
f and r(ν, Txyν) otherwise

Suppose that q is a regular, ergodic SMQ generator and
denote its stationary distribution by Π. Consider the TB
process {Nt} given by the above truncation of the generator
q. In what follows we assume that the TB process is also
ergodic and has a particular form of the limiting distribution
Πtb(·) = Π(· ∩M

f)/Π(Mf) being the truncation of Π to M
f .

This truncation property does not always hold, and one simple
sufficient condition for this to hold is when the original free
process given by q is reversible (cf [13, Proposition 3.14]).

In order to formalize the notion of the blocking probability
and blocked displacements one models the time-epochs and
departure-arrival locations of these blocked transitions by a
double stochastic Poisson point process Φ0 =

∑
i δ(ti,xi,yi)

driven by TB process {Nt}, where ti, xi, yi denote, re-
spectively, the time-epochs, departure and arrival locations
of blocked transitions. Given a realization {N·} of the TB
process, Φ0 is a Poisson point process with intensity measure
ΛN· on (0,∞) × (D̄)2, given by ΛN·(D × A × B) =∫

D
q(Nt, TABNt\M

f)dt. Denote also by Φ1 the point process
on (0,∞)× (D̄)2 associated to (“true”) transitions of Nt; i.e.,
Φ1(D × A × B) =

∑
s>0 1(s ∈ D,Ns = TxyNs−, x ∈
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A, y ∈ B). Let Φ = Φ0 + Φ1 be the superposition of
Φi, i = 0, 1. Finally define the blocking probability for the
transitions ν → TAB(ν) for some A,B ∈ D̄ and ν ∈ M

f

(we will call them transitions from A to B for short) as the
following limiting ratio of blocked transitions to all transitions

ptb
AB = lim

t→∞
Φ0((0, t] × A × B)
Φ((0, t] × A × B)

(A.1)

The above limit exists by the following result.
Lemma A.1: Suppose that ∅ is a positive recurrent state for

qtb (which is true in particular if qtb is ergodic) with the
limiting distribution Πtb. If

EΠtb [q(N, M)] < ∞ (A.2)

then limt→∞ 1
t Φ0((0, t]×A×B) = EΠtb [q(N,TABN \M

f)]
and limt→∞ 1

t Φ1((0, t]×A×B) = EΠtb [q(N,TABN ∩M
f)]

a.s. for any initial value N0 = ν of the TB process, for which
the return time to ∅ is a.s. finite.

Proof: Consider a probability space on which the TB
process {Nt}t and both point processes Φi (i = 0, 1)
are (time) stationary. Denote by EΠtb the expectation cor-
responding to the stationary distribution of {Nt}t≥0. Con-
dition (A.2) implies that the point process Φ1 has finite
intensity. Indeed, EΠtb [Φ1((0, 1]×D̄×D̄)] = EΠtb [qtb(N0)] ≤
EΠtb [q(N0, M)] < ∞ where the equality follows from the
Lévy’s formula. Similarly, the intensity of Φ0 that is a doubly
stochastic Poisson point process is finite EΠtb [Φ0((0, 1]×D̄×
D̄)] =

∫ 1

0
EΠtb [q(Nt, M \ M

f)] dt ≤ EΠtb [q(N0, M)] < ∞.
For given A,B ⊂ D̄ the processes Xi

t = Φi((0, t] × A × B)
(i = 1, 2) are cumulative with the imbedded renewal process
being the epochs of successive visits of Nt at ∅. Thus
limt→∞ 1

t Φ1((0, t] × A × B) = EΠtb [Φ1((0, 1] × A × B)] =
EΠtb [q(N0, TABN0∩M

f)], where the second equality follows
from Lévy’s formula. Similarly, by the fact that Φ0 is a doubly
stochastic Poisson point process limt→∞ 1

t Φ0((0, t] × A ×
B) = EΠtb [Φ0([0, 1]×A×B)] = EΠtb [ΛN·((0, 1]×A×B)] =
EΠtb [q(N0, TABN0 \ M

f)]. This completes the proof.
The following result immediately follows from Lemma A.1.
Proposition A.2: If the conditions of Lemma A.1 are satis-

fied, then
ptb

AB = EΠtb [q(N,TABN \ M
f)]/EΠtb [q(N,TABN)].

The number of blocked displacement per user introduced in
Section IV-A can be formally defined as follows

dtb = lim
t→∞

Φ0((0, t] × D × D)
Φ((0, t] × D × {o}) (A.3)

The following result follows from Lemma A.1.
Proposition A.3: If the conditions of Lemma A.1 are satis-

fied then
dtb = EΠtb [q(N,TDDN \ M

f)]/EΠtb [q(N,TDoN)].

We will give now the proof of Corollary 4.4.
Proof: We use Proposition A.3. Recall that in the case

of the MPL free process Π is the distribution of the Poisson
point process with intensity ρ, and Πtb is the truncation of Π
to M

f . Thus, the denominator in the formula for dtb given in

Proposition A.3 is equal to

EΠtb [q(N,TDoN)] = τEΠtb [N(D)]

= (Π(Mf))−1τEΠ

[∫
D

1(N ∈ M
f)N(dx)

]

= (Π(Mf))−1τ

∫
D

EΠ[1(N + εx ∈ M
f)]ρ(dx)

= τ

∫
D

(1 − ptb(x))ρ(dx) ,

where the last but one equality follows from the
Campbell formula. Similarly one can show using
Campbell formula that EΠtb [1(TxyN �∈ M

f)N (dx)] =
Π(Mf)−1Π

(
N + δx ∈ M

f , N + δy �∈ M
f
)
ρ (dx). Applying

the above expression to the numerator in the formula for dtb

given in Proposition A.3 one conculdes the proof.
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