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Abstract Our objective is to analyze the impact of
fading and opportunistic scheduling on the quality of
service perceived by the users in an orthogonal
frequency-division multiple access cellular network. To
this end, assuming Markovian arrivals and departures
of customers that transmit some given data volumes, as
well as some temporal channel variability (fading), we
study the mean throughput that the network offers to
users in the long run of the system. Explicit formulas
are obtained in the case of allocation policies, which
may or may not take advantage of the fading, called
respectively opportunistic and non-opportunistic. The
main practical results of the present work are the fol-
lowing: Firstly, we evaluate for the non-opportunistic
allocation the degradation due to fading compared to
additive white Gaussian noise (AWGN; that is, a de-
crease of at least 13% of the throughput). Secondly,
we evaluate the gain induced by the opportunistic allo-
cation. In particular, when the traffic demand per cell
exceeds some value (about 2 Mbits/s in our numerical
example), the gain induced by opportunism compen-

Electronic supplementary material The online version of this
article (doi:10.1007/s12243-011-0265-8) contains
supplementary material, which is available
to authorized users.

B. Błaszczyszyn
INRIA & ENS, 23 Avenue d’Italie,
75214 Paris Cedex 13, France
e-mail: Bartek.Blaszczyszyn@ens.fr

M. K. Karray (B)
France Telecom, Research and Development Division,
38/40 rue du Général Leclerc,
92794 Issy-Moulineaux, France
e-mail: mohamed.karray@orange-ftgroup.com

sates the degradation induced by fading compared to
AWGN.
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1 Introduction

Wireless cellular networks are in permanent and rapid
evolution. They provide service for constant bitrate
(CBR) calls (such as voice calls, video conferences, etc.)
and carry variable bitrate (VBR) calls (such as mail,
ftp), which accept fluctuations of the rates. Customers
arrive to the network and require some service. Once
they are admitted, they are allocated some resource
(power, bandwidth, code) for the duration of their
service, and then they depart from the network. Besides
the dynamics due to user arrivals and departures, the
channel conditions vary due to fading.

Growing traffic requires better planning and/or di-
mensioning of the networks. This task can be sub-
stantially simplified by analytical study of the dynamic
network performance.

The objective of the present paper is to account for
the ef fect of fading in the dynamic performance eval-
uation of the downlink of an orthogonal frequency-
division multiple access (OFDMA) cellular network.

To this aim, the following two groups of elements
are crucial: on one hand, the network geometry and the
resource allocation, which can be chosen by the network
designer, and on the other hand, channel conditions
and the user traffic (intensity of arrivals and requested
service) can only be predicted by the designer. In order
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to optimize the network performance, the resource
allocation should be adapted to the channel and traffic
conditions. Besides better coding (up to the information
theory’s limit) one is looking for allocations that are
opportunistic, i.e., take advantage of the actual channel
state and user position, preserving some fairness of the
mean service rates offered to users. More precisely, the
opportunistic allocation assumes that at each time, each
bandwidth portion is allocated to the user with the most
favorable fading state. Once the resource allocation is
given, the quality of service (i.e., blocking probability
for CBR and throughput for VBR) perceived by the
users may be evaluated using queueing theory.

Individual elements of the above puzzle (i.e., in-
formation theory, resource allocation, and queueing
theory) are often studied and optimized separately. The
main contribution of this paper is a global approach
that combines these elements to deduce the perfor-
mance of the non-opportunistic and the opportunistic
resource allocations. In doing so, we systematically use
a separation of the times scales of different elements of
the network dynamics, described in Section 2.1.

The main practical results of the present work
are the following: Firstly, we evaluate for the non-
opportunistic allocation the degradation due to fading
compared to additive white Gaussian noise (AWGN).
Secondly, we evaluate the gain induced by the oppor-
tunistic allocation.

The remaining part of this paper is organized as
follows: In Section 1.1, we list these existing results
in the literature that are used in our global approach.
Our model of the OFDMA network is presented in
Section 2. In Section 2.1, we describe the network
dynamics and its decomposition into three time scales.
They correspond, respectively, to information theory,
resource allocation, and queueing theory which are
studied in Sections 3, 4, and 5, respectively. The numer-
ical results are described in Section 6. Finally, Section 8
describes some interesting perspectives.

1.1 Related work

A growing interest in OFDMA has resulted in many
publications on performance evaluation of such net-
works. It is not in the scope of this paper to make a
thorough review of this literature. For some references
on this field, see for example those cited in [17]. Here
we remark only those results that are directly related to
our approach.

Our starting point is our work in [17] assuming
AWGN channels between the users and the base sta-
tions. Coluccia et al. [11] study the optimality and
fairness in resource allocation. As regard to the perfor-

mance of the opportunistic allocation policy over fad-
ing, we extend the approach of [6] and [19] to OFDMA
networks. Moreover, we use the known results for
the stability and stationary distribution of the multi-
class extension of the processor sharing queue (see,
e.g., [9, 21]).

The above results are used as building blocks to eval-
uate the dynamic performance of the non-opportunistic
and the opportunistic resource allocations in OFDMA
multi-cell networks. The present paper is an extended
version of [5]. Besides more detailed proofs and analy-
sis, the major extension is to show that the capacity
lower bounds (which are the basis of our analytical
approach) hold true even if there are a few number
of interferers (Propositions 1 and 3 below). We carry
this extension by building an argument based on the
Jensen’s inequality in place of the law of large numbers
argument used in our previous work [5].

Some attempts to make other extensions of the
present work are currently carried by other researchers;
for example, Combes et al. [12] attempt to account for
frequency selective fading channels.

2 Model assumptions

We will consider a wireless network composed of sev-
eral base stations (BS). Each BS is equipped with a
single antenna (no MIMO), and its total power is lim-
ited to some given maximal value. The same frequency
spectrum is available to all BS (frequency reuse factor
equal to one). Each BS allocates disjoint subcarriers
to its users without macrodiversity (each user is served
by exactly one BS). Thus, any given user receives only
other-BS interference that is the sum of powers emitted
by other BS on the subcarriers allocated to him by
his BS.

When the radio signal propagates (from a BS to a
given user), it is attenuated. We model the propagation
loss as the product of three factors called distance loss,
shadowing, and fading. The first factor is due to the
distance between the transmitter and the receiver. The
shadowing is due to the attenuation by the obstacles
between the transmitter and the receiver. The fading is
due to the reflection on the obstacles in the neighbor-
hood of the receiver which generate multiple paths. We
account only for the distance and the fading effects in
the present study.

We assume that the bandwidth of each subcarrier is
smaller than the coherence frequency of the channel, so
that we can consider that the fading in each subcarrier
is flat. That is, the output of the channel at a given time
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depends on the input only at the same instant of time.
We do not make any assumption on the correlation of
the fading processes corresponding to different subcar-
riers (for a given user and a given BS). However, the
fading processes for different users or base stations are
assumed independent.

Time is divided into time slots of length smaller than
the coherence time of the channel, so that, for a given
subcarrier, the fading remains constant during each time
slot and the fading process in different time slots may be
assumed ergodic (such model for fading generalizes the
so-called quasi-static model where the fading process at
different time slots is assumed to be independent and
identically distributed (i.i.d.)).

The fading in each time slot and each subcarrier
is a Rayleigh distributed random variable. The code-
word duration equals the time slot, which is assumed
sufficiently large so that the capacity within each time
slot may be defined in the asymptotic sense of the
information theory.

Users perform single user detection; thus, the inter-
ference is considered as additive noise and added to the
AWGN. The statistical properties of the interference
are not known a priori since they depend on the codings
of the other users. Moreover, the signals transmitted by
different base stations are assumed independent.

For each subcarrier and each time slot, efficient (e.g.,
turbo) codes are used to obtain bitrates close to the
capacity given by information theory (i.e., the maximal
rate for which there exist coding schemes with error
probability vanishing when the length of the code is
sufficiently large). In particular, for the AWGN chan-
nel, the capacity equals

C = w log2(1 + SNR) (1)

where w is the bandwidth and SNR designates the
signal-to-noise power ratio.

2.1 Separation of time scales

We assume that there are a few time scales each as-
sociated to the evolution of some stochastic process.
Roughly speaking, we assume that the duration of each
time scale is sufficiently large so that the corresponding
process converges to its stationary state and sufficiently
small so that the processes of the larger time scales do
not evolve within this duration.

We describe now the time scales from the fastest to
the slowest one. The fastest time scale corresponds to
information theory. The users’ number and positions as
well as powers and bandwidths allocated to them are

assumed fixed. Then the bitrate of each user cannot
exceed the capacity given by information theory (i.e.,
the maximal rate for which there exist coding schemes
with error probability vanishing when the length of the
code is sufficiently large). This information theory con-
straint (i.e., existence of a coding scheme corresponding
to the bitrate) together with the maximal power and
bandwidth constraints constitute the resource allocation
constraints.

The intermediate time scale corresponds to the re-
source allocation problem. The users’ number and
positions are assumed fixed. The network attempts
to allocate powers, bandwidths, and bitrates (coding
schemes) to all users respecting the resource allocation
constraints.

This problem may be reformulated in terms of some
condition on the bitrates. More precisely, by feasibility
condition we mean a condition regarding bitrates of
different users which guarantees the existence of pow-
ers and bandwidths satisfying the resource allocation
constraints.

It is the role of the load control to guarantee this
condition. The load control comprises the admission
control (for CBR traffic) which checks at the arrival
instant of each new user the feasibility condition and
decides whether it can be admitted or not and the
congestion control (for VBR traffic) which may modify
the user bitrates to satisfy the feasibility condition. Once
this is done, the network allocates powers and band-
widths to all users supporting the (feasible) bitrates.

The slowest time scale corresponds to queueing the-
ory, where we consider the stochastic process of users’
positions which is driven by call arrivals and durations
or data volumes. This process is subject at each time
the feasibility condition described above. The station-
ary state (or distribution) of this process permits to
calculate the quality of service perceived by the users.

2.2 Power allocation

The network may operate a power adaptation. Such
power adaptation may be either a power control to
transmit just what is necessary to compensate the inter-
ference as described in [17] or a water f illing attempting
to maximize the cell capacity by allocating the powers
among the users according to their fadings as described
in [20] (Theorem 2, p. 119).

We shall assume that the signal transmitted by each
BS has a given power constant over time (which equals
to the maximal authorized value) and a constant power
spectral density (i.e., the power is the same for all
subcarriers). The performance obtained with this as-
sumption gives a lower bound of the performance of a
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network which operates a power adaptation. We shall
carry our analysis by considering further lower bounds
when necessary. The dimensioning based on such lower
bounds is conservative.

2.3 Resource allocation

We always assume that each user (receiver) knows its
own fading state, a situation called channel state infor-
mation at receiver (CSIR) in literature.

We shall consider two resource allocation schemes:

1. Non-opportunistic: The BS does not take into ac-
count the fading when allocating the subcarriers to
the users. This may be due to the fact that the BS
(transmitter) does not know the fading states of its
users.

2. Opportunistic: The BS takes into account the fading
when allocating the subcarriers to the users. This
requires that the BS (transmitter) knows the fading
states of its users, a situation called channel state
information at transmitter in literature. The gain
obtained by the opportunistic allocation is called
the multiuser diversity gain.

2.4 Possible model extensions

Even though our model seems to have many simplifying
assumptions, we will show that it permits to capture and
analyze the principal impacts of fading and multiuser
diversity gain in cellular OFDMA networks. Moreover,
the following remarks show how to extend the model.

In [15], it is observed that for OFDMA systems im-
plementing a family of M-QAM modulations (as those
described in [13]) with some BER target, the AWGN
capacity formula 1 should be replaced by

C = w log2

(
1 + SNR

�

)

where � = − ln (5 × BER) /1.5 (which is larger than 1
for BER < e−1.5/5 � 0.0446). Thus, accounting for real
coding schemes may be tentatively taken into account
in our approach by an appropriate modification of
the AWGN capacity formula (for a similar question
for high-speed downlink packet access (HSDPA) net-
works, it is observed in [16] (Fig. 11.1, p. 175) that HS-
DPA coding offers a capacity which is approximately
the third of the AWGN capacity).

The assumption that the fading is constant over a
time slot may be replaced by the less restrictive assump-
tion that the fading is ergodic and perfectly known by
the receiver (see [7]). In what follows, we analyze the
three time scales of our model described in Section 2.1.

3 Information theory

We assume that the users do not move at the considered
time scale. Consider a given user served by a given BS
u. For each subcarrier and each time slot, say [0, T], the
channel output Y(t) is related to the transmitted signal
X(t) by

Y(t) = Su × X(t) + Z (t) + I(t), t ∈ [0, T]

where Su represent the fading assumed constant, Z (t)
designate the noise assumed AWGN with power spec-
tral density N0, and I(t) is the interference (we skip
for the moment the propagation loss induced by the
distance).

Lets denote by p be the power in a given subcarrier,
that is,

E
[|X(t)|2] = p

For each interfering BS v, let Xv(t) be its transmitted
signal and Sv be the fading assumed constant. Then the
interference equals to

I(t) =
∑
v �=u

Sv Xv(t)

Since the signals transmitted by different base stations
are assumed independent (and centered),

E
[|I(t)|2] =

∑
v �=u

|Sv|2 E
[|Xv(t)|2

] = p
∑
v �=u

|Sv|2

Using [22] (Theorem 18), we may show that the
worst noise process distribution (not necessarily white
nor Gaussian) for capacity with given second moment
is the AWGN. We deduce that the capacity C within
the considered time slot is lower bounded by

C ≥ w log2

(
1 + p |Su|2

wN0 + p
∑

v �=u |Sv|2
)

where w is the bandwidth of a subcarrier.

Remark 1 An alternative way to show the above in-
equality is to use [1] (Lemma 1, p. 30) giving the ca-
pacity of the interference channel. It is frequent to see
in literature the equality sign in place of the inequality
in the above display, as for example [20] (p. 118). We
do not see why the equality may be justified in this
generality (see [2] (§4, p. 811) for a similar question).

We will now introduce propagation loss Lv induced
by the distance between BS v and the given user. In
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order to account for these losses, the above formula
should be replaced by

C ≥ w log2

(
1 + p |Su|2 /Lu

wN0 + p
∑

v �=u |Sv|2 /Lv

)
(2)

3.1 Ergodic capacity

We will see soon that the expectation of the capac-
ity with respect to the fading process (called ergodic
capacity) plays a crucial role. We will not make any
assumption of the distribution of the fading process
except that

E
[|Su|2

] = 1

Proposition 1 The ergodic capacity E
[
C

]
is lower

bounded by

E
[
C

] ≥ wE
[
log2

(
1 + β |Su|2

)]
where the expectation is with respect to the fading ran-
dom variables and

β = p/Lu

wN0 + p
∑

v �=u 1/Lv

(3)

which may be viewed as the signal-to-interference and
noise ratio (SINR) in our model.

Proof Note that the expectations in the present proof
are with respect to the fading random variables Su

and (Sv)v �=u. Let E
[·|Su

]
designates the expectation

conditionally to Su. By the properties of the conditional
expectation, we have

E
[
C

] = E
[
E

[
C|Su

]]
Equation 2 implies

E
[
C|Su

] ≥ wE

[
log2

(
1+ P |Su|2 /Lu

N + P
∑

v �=u |Sv|2 /Lv

)
|Su

]

Since the function x �→ log (1 + 1/x) is convex on R
∗+

(its second derivative is 2x+1
x2(x+1)2 ), we deduce from

Jensen’s inequality that the right-hand side of the above
equation is larger than E

[
log2

(
1 + β |Su|2

) |Su
]

where
β is given by Eq. 3. Thus,

E
[
C

] = E
[
E

[
C|Su

]]
≥ wE

[
E

[
log2

(
1 + β |Su|2

) |Su
]]

= wE
[
log2

(
1 + β |Su|2

)]
	


4 Resource allocation

4.1 Non-opportunistic allocation

We consider a given subcarrier and multiple time slots.
Recall that the fading for different time slots are inde-
pendent and identically distributed. By the law of large
number, the capacity averaged over a large number of
time slots would approach the so-called ergodic capac-
ity E

[
C

]
where the expectation is with respect to the

fading states. Proposition 1 gives a lower bound for
E

[
C

]
.

Averaging over a large number of time slots corre-
sponds to exploiting the so-called time-diversity which
is suitable for the analysis of the performance of VBR
traffic as observed in [8] (§I).

Remark 2 Note that the formula

E
[
log2

(
1 + β |Su|2

)]
is similar to the capacity of a channel with ergodic
fading in [7] (or i.i.d. fading in [14] (Eq. 2)) and CSIR
(i.e., the receiver knows the fading). Nevertheless, the
fading varies during a codeword there, whereas in the
model considered in the present paper the fading is
constant during a codeword.

Since |Su| is Rayleigh distributed, i.e., it has the
probability density function

f|Su|(s) = 2se−s2
1s≥0

then H = |Su|2 has exponential distribution

fH(h) = e−h1h≥0

In this case,

E
[
log2

(
1 + β |Su|2

)] =
∫ ∞

0
log2 (1 + βh) e−hdh

= 1

ln 2
eβ−1

Ei
(
1, β−1

)

where

Ei (1, x) =
∫ ∞

1

e−xt

t
dt

is the exponential–integral function.

Remark 3 Frequency diversity. We consider now a
given time slot and large number n of subcarriers. As-
sume that the fading variables for different subcarriers
are i.i.d. (or more generally the fading process is ergodic
with respect to the number n of subcarriers). Then
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again, by the law of large number, the capacity of a
large number n of subcarriers is lower bounded by

nwE
[
log2

(
1 + β |Su|2

)]

Thus, the ergodic capacity is also appropriate for CBR
traf f ic (where we cannot always count on time diver-
sity) when the number of subcarriers allocated to each
user is large enough.

4.1.1 Feasible bitrates

A base station u allocates to each user m in its cell
(denoted with a slight abuse of notation by m ∈ u) a
number of subcarriers of total bandwidth wm (that is
the bandwidth w of a given subcarrier multiplied by
the number of subcarriers allocated to the user). The
following proposition gives a condition on the users bi-
trates (rm)m∈u assuring the feasibility of the bandwidths
allocation.

Proposition 2 Let u be a given base station, W be the
total system bandwidth and

βm = p/Lu,m

wN0 + p
∑

v �=u 1/Lv,m
(4)

be the SINR for user m ∈ u, where N and P are, respec-
tively, the noise and signal powers in a given subcarrier
(of bandwidth w) and Lv,m is the propagation loss
between BS v and user m. If the users bitrates (rm)m∈u

satisfy the following condition:

∑
m∈u

rm

E
[
log2

(
1 + βm |Su|2

)] ≤ W (5)

then the allocation of the bandwidths to the users is
feasible.

Proof The feasibility of a bandwidth allocation may
be formulated as follows: Do there exist bandwidths
(wm)m∈u whose sum does not exceed the total band-
width W, that is,
∑
m∈u

wm ≤ W

We deduce from Proposition 1 that the following bi-
trates are feasible from the information theory point of
view

rm = wm E
[
log2

(
1 + βm |Su|2

)]
, m ∈ u

where the SINR βm is given by Eq. 4. Since βm is inde-
pendent of the number of subcarriers allocated to the

user, we may easily express the bandwidth as function
of the bitrate as follows:

wm = rm

E
[
log2

(
1 + βm |Su|2

)]
The condition 5 on the bitrates assures that the sum of
the bandwidths given by the above equation does not
exceed the total bandwidth W. 	


Note that Eq. 5 may be written as follows:
∑
m∈u

rmγm ≤ 1 (6)

where

γm = [
W E

[
log2

(
1 + βm |Su|2

)]]−1
(7)

Each bitrate allocation satisfying Eq. 6 will be called
non-opportunistic allocation. Note that the constraint 6
on the bitrates do not depend on the current values of
the fadings but only on their statistics.

4.2 Opportunistic allocation

We assume that the BS knows the fading states of all
the users in its cell and that each user knows his own
fading state.

4.2.1 Analysis for a given subcarrier

We account now for the fading variations at the re-
source allocation time scale. In what follows, by oppor-
tunistic allocation we mean that at a given time slot, each
subcarrier is allocated to the user with the most favorable
fading state; more precisely, each BS u allocates the
subcarrier to the user m such that
∣∣Su,m

∣∣ = max
n∈u

∣∣Su,n
∣∣ (8)

We aim now to calculate the ergodic throughput of each
user per time slot under this policy.

If we allocate a given subcarrier to a user m ∈ u, then
we deduce from Eq. 2 that, for a given time slot, we can
find a coding scheme to support the following bitrate

Rm = w log2

(
1+ p

∣∣Su,m
∣∣2

/Lu,m

N + p
∑

v �=u

∣∣Sv,m
∣∣2

/Lv,m

)
, m ∈ u

where the Sv,m are the fading states between the user
m and BS v for the considered subcarrier and time slot.
Let us denote by R̄m the bitrate effectively allocated
by the opportunistic policy to a given user m averaged
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over a large number of time slots. From the assumed
temporal ergodicity, we deduce that

R̄m = E
[

Rm × 1
{∣∣Su,m

∣∣ = max
n∈u

∣∣Su,n
∣∣}]

Proposition 3 Assume that for a given time slot the bit-
rate of user m is given by

Rm = wφ

(
p

∣∣Su,m
∣∣2

/Lu,m

N + p
∑

v �=u

∣∣Sv,m
∣∣2

/Lv,m

)
, m ∈ u (9)

where φ is a function def ined on R+ having a well-
def ined Laplace transform Lφ (u) = ∫ +∞

0 φ (x) e−uxdx
and such that the function x �→ φ (1/x) is convex on R+.
Then for the opportunistic allocation (Eq. 8), the bitrate
ef fectively allocated to user m and averaged over a large
number of time slots is lower bounded by

R̄m ≥ R′
m (10)

:= wE
[
φ

(
βm

∣∣Su,m
∣∣2

)
× 1

{∣∣Su,m
∣∣ = max

n∈u

∣∣Su,n
∣∣}]

= w

∫ +∞

0
φ (βmx) e−x (

1 − e−x)M−1 dx (11)

= w

βm

M−1∑
k=0

(
M − 1

k

)
(−1)k Lφ

(
k + 1

βm

)
(12)

where βm is given by Eq. 4 and M is the number of the
users in the cell.

Proof Since the function x �→ log (1 + 1/x) is convex,
the inequality 10 follows from Jensen’s inequality. Since
the

∣∣Su,n
∣∣2 are exponentially distributed, we get

R′
m

= w

∫
R

M+
φ (βmxm) 1

{
xm = max

n∈u
xn

} ∏
n∈ue−xn dxn

= w

∫
R+

φ (βmx) e−x
∫

R
M−1+

∏
n�=m1 {xn ≤ x} e−xn dxndx

= w

∫
R+

φ (βmx) e−x∏
n�=m

∫
R+

1 {xn ≤ x} e−xn dxndx

= w

∫
R+

φ (βmx) e−x (
1 − e−x)M−1 dx

= w

∫ +∞

0
φ (βmx) e−x (

1 − e−x)M−1 dx

Using the binomial formula

(
1 − e−x)M−1 =

M−1∑
k=0

(
M − 1

k

)
(−1)k e−kx

we get

R′
m = w

M−1∑
k=0

(
M − 1

k

)
(−1)k

∫ +∞

0
φ (βmx) e−(k+1)xdx

= w

M−1∑
k=0

(
M − 1

k

)
(−1)k

∫ +∞

0
φ (y) e− k+1

βm
y dy
βm

= w

βm

M−1∑
k=0

(
M − 1

k

)
(−1)k Lφ

(
k + 1

βm

)

	


We prove now that the Shannon function log2 (1 + x)

satisfies the conditions of the above proposition.

Lemma 1 The function φ (x) = log2 (1 + x) has a well
def ined Laplace transform given by

Lφ (u) = eu

u ln 2
Ei (1, u) (13)

and the function x �→ φ (1/x) is convex on R+.

Proof The Laplace transform of φ (x) = log2 (1 + x) is

Lφ (u) =
∫ +∞

0
log2 (1 + x) e−uxdx

= 1

ln 2

∫ +∞

0
ln (1 + x) e−uxdx

= 1

ln 2

∫ +∞

0

e−ux

u (1 + x)
dx

= eu

u ln 2

∫ ∞

1

e−ut

t
dt = eu

u ln 2
Ei (1, u)

where for the third line we use an integration by parts.
The convexity of the function x �→ φ (1/x) on R+ was
already shown in the proof of Proposition 1.

4.2.2 Symmetric case

The expression of R′
m (defined by Eq. 10) in the case

when φ is linear; that is, φ (x) = x/ ln 2 was already
given by Borst [6] (§II) who showed that

R′
m =

(
1

M

M∑
k=1

1

k

)
wβm

ln 2
(14)

This case is called symmetric in [6] (§II) since the ran-

dom variables φ
(
βm

∣∣Su,m
∣∣2

)
normalized by their ex-

pectations with respect to the fading states are identi-
cally distributed.
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On the other hand, Lφ (u) = 1
u2 ln 2 ; thus, we deduce

from Eq. 12 that

R′
m =

(
M−1∑
k=0

(
M − 1

k

)
(−1)k 1

(k + 1)
2

)
wβm

ln 2

which is coherent with Eq. 14 since it is straightforward
to prove that

M−1∑
k=0

(
M − 1

k

)
(−1)k 1

(k + 1)
2 = 1

M

M∑
k=1

1

k

(indeed, letting f (x) = ∑M−1
k=0

(M−1
k

)
(−1)k e−(k+1)x

(k+1)
2 and

observing that f ′′ (x) = e−x
(
1 − e−x

)M−1, we get

f (x) = 1
M

∑M
k=1

1−(1−e−x)k

k which applied to x = 0 gives
the desired result).

Thus, the expression of R′
m in our Proposition 3 may

be seen as an extension of the result in [6] (§II) to the
non-symmetric case, since it holds true even when the

random variables φ
(
βm

∣∣Su,m
∣∣2

)
normalized by their

expectations are not necessarily identically distributed.
Note finally that Eq. 14 may be written as follows:

R′
m = 1

h(M)

w

W
1

γ ′
m

(15)

where h(M) = M/
∑M

k=1 1/k and γ ′
m = ln 2

Wβm
. Thus, in

the symmetric case, R′
m is decomposed into some func-

tion the number M of the users multiplied by some
function of the position of user m. This particular form
allows an explicit calculus of the performance at the
queueing theory time scale as will be shown in Proposi-
tion 5 below.

4.2.3 Feasible bitrates

The bitrate for user m over all the bandwidth, say r′
m, is

related to the bitrate R′
m per subcarrier by

r′
m = W

w
R′

m (16)

where R′
m is given by Eq. 11.

Example 1 In the particular case when R′
m is given by

Eq. 15, then

r′
m = 1

h(M)

1

γ ′
m

(17)

5 Queueing theory

5.1 Traffic dynamics

Denote the geographic region covered by the a cell
by D that is assumed to be a bounded subset of the
plane R

2. Consider only VBR calls whose inter-arrival
times to D are i.i.d. exponential random variables with
rate λ (mean 1/λ). The position of each arrival is picked
at random in D according to the uniform distribution.
We assume that users do not move during their calls.
Each call requires to transmit a given volume of data
(amount of bits that has to be sent or received), which
is modeled by an independent of everything else, expo-
nential random variable with parameter μ. The quan-
tity ρ = λ/μ is called the traf f ic demand (expressed in
Mbps1) per cell. Users are served by the BS according
to some bitrate allocation policy.

The set of positions of all users served at a given
time is called conf iguration of users. Let M be the set
of all possible configurations (this can be formalized,
e.g., on the basis of the theory of point processes). We
denote by {Nt}t≥0 the process describing the evolution
in time of the user configurations in D (due to arrivals
and departures). It takes its values in M. If the process
{Nt}t≥0 is not ergodic, then the mean number of users
in the system grows unboundedly in the long run of
the system. This situation has to be avoided, in which
case we say that the system is stable (or equivalently
ergodic).

One distinguish two milestones of the analytical eval-
uation of the network performance: identification of its
stability region and the evaluation of the steady-state
characteristics (e.g., the mean throughput and delay).

5.2 Non-opportunistic allocation

Define the critical traf f ic demand ρc by

ρc = 1

γ̄

where γ̄ is the expectation of γm (which is given by
Eq. 7) with respect to the position of the user m uni-
formly distributed in the cell.

Proposition 4 Assume any non-opportunistic work-
conserving bitrate allocation satisfying condition 6. If the
traf f ic demand per cell

ρ < ρc (18)

1The abbreviation Mbps designates “kilobit per second”.
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then the system is stable. Consider the particular allocation

rm = 1

Mγm
(19)

Then, at the steady state, the expected number of users in
cell u, denoted N̄, equals

N̄ = ρ

ρc − ρ
(20)

the mean delay per call, denoted T̄, is

T̄ = 1

μr̄
= 1

μ (ρc − ρ)
(21)

and the mean throughput, denoted r̄, equals

r̄ = ρc − ρ (22)

Proof A bitrate allocation is said to be work conserving
when

∑
m∈u rmγ (m) = 1 as long as there is at least

a user in the cell. The stability condition 18 and the
expression 20 of the users number at the steady state
follow from known results for multi-class processor
sharing queues [10, 18]. Applying Little’s formula [3],
we get the expression 21 for the delay. Using the fact
that the throughput r̄ is the ratio of the date volume
average , which equals 1/μ, and the delay T̄ proves
Eq. 22. 	


5.3 Opportunistic allocation

The following proposition gives the performance of the
opportunistic allocation (Eq. 17):

Proposition 5 Consider the opportunistic bitrate alloca-
tion (Eq. 17) and denote by γ̄ ′ the expectation of γ ′

m with
respect to the user’s location m uniformly distributed in
the cell. If the traf f ic demand per cell

ρ <
1

γ̄ ′ lim
n→∞

n
h (n)

then the system is stable. Moreover, at the steady state,
the mean throughput per user, denoted r̄′, equals

r̄′ = 1

γ̄ ′
1

H(γ̄ ′ρ)

where the function H(s) is def ined for s > 0 by

H(s)= E[H(X + 1)]
E[H(X)] , H (M) =

{∏M
k=1 h(k) if M ≥ 1

1 if M = 0

where X is a Poisson random variable with parameter s.
Moreover, the mean delay is

T̄ = 1

μr̄′ = γ̄ ′H(γ̄ ′ρ)

μ

and the mean number of users at the steady-state equals

γ̄ ′ρH(γ̄ ′ρ)

Proof See [6] (Proposition 3.1) and [16] (§11.1). 	


5.3.1 Approximation

Note that Proposition 5 assumes a particular case when
the decomposition (Eq. 17) holds true as in the symmet-
ric case described in Section 4.2.2.

Unfortunately, for the more general allocation
(Eq. 16), we do not know a closed form for the perfor-
mance, especially because the geometric parameters βm

depend on the location of the user m. The idea is then
to replace these parameters by a constant β0 calculated
as follows.

β0 is determined in such a way that the average over
the cell of the factors γm given by Eq. 7 should remain
unchanged when the βm are replaced by β0 (by Propo-
sition 4, this is equivalent to say that the performance
of the non-opportunistic allocation (Eq. 19) remains
unchanged when the βm are replaced by β0).

We will approximate the performance of our oppor-
tunistic scheme (Eq. 16) by replacing βm with β0 and
applying Proposition 5.

6 Numerical results

6.1 Model specification

In order to obtain numerical values, we consider the
most popular hexagonal network model, where the base
stations are placed on a regular infinite hexagonal grid.
Let R be the radius of the disk whose area is equal to
that of the hexagonal cell served by each base station
and call R the cell radius. We take R = 0.525 km. We
assume a distance loss L(r) = (Kr)η, with η = 3.38, K =
8,667 km−1. This means that the distance loss between
BS u and user m is equal to L(|xu, xm|) where xu, xm

denote, respectively, the geometric location of u and m
and | · | is the Euclidean distance.

We consider VBR traffic with traffic demand as-
sumed (spatially) uniform over the cell. We consider a
traf f ic demand per cell ρ varying from 0 to 20 Mbps.

The BS maximal total power is P̃ = 52 dBm (ac-
counting for antenna gains and losses), the total
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Fig. 1 Validation of the approximation for the opportunistic
allocation

bandwidth is W = 5 MHz, and the ambient noise power
W N0 = −103 dBm.

6.2 Results

Figure 1 shows the throughput per user as function
of the traffic demand per cell for the opportunistic
allocation. We show the result of the simulations and
of the approximation described in Section 5.3.1. The
two curves are close which validates the considered
approximation.

Figure 2 shows the throughput per user as function
of the traffic demand per cell for the AWGN, non-
opportunistic and opportunistic allocation. Firstly, we
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Fig. 2 Comparison of the performance of the different allocations

observe that for the non-opportunistic allocation, the
fading decreases the throughput per user of at least
13% compared to AWGN. Note moreover that the
non-opportunistic allocation gives, like AWGN, the
throughput that is a linear function of the demanded
traffic in the bounded stability region. Secondly, the
gain induced by opportunism increases with the traffic.
When the traffic demand is very small, the gain induced
by the opportunistic allocation is negligible. Neverthe-
less, when the traffic demand per cell exceeds some
value (about 2 Mbps in our example), the gain induced
by opportunism compensates the degradation induced
by fading compared to AWGN.

7 Conclusion

We have given analytic expressions for the mean
throughput and delay in OFDMA cellular networks
with VBR traffic. These formulas take into account in a
simple but not simplistic way all important elements of
the network performance: the network geometry, the
traffic dynamics, fading, and bitrate allocation policy.
They allow, in particular, to compare in a systematic
way the effect on performance of fading for either non-
opportunistic or opportunistic allocation policies.

8 Perspectives

Even though we assumed Rayleigh distribution for the
fading, the approach may be extended to other distrib-
utions such as Rice, Nakagami, etc.

It may be useful to study the effect of grouping the
subcarriers into the so-called chunks (i.e., a group of
subcarriers and a number of time slots; see [20] (§6.2)).

As observed in [20] (§6.2), the non-opportunistic
allocation scheme is suitable for fast varying fading,
due to high mobility of users for example, which makes
difficult to track of the rapidly varying channel. On
the other hand, the opportunistic allocation scheme
is suitable for slow varying fading as in the case of
fixed (or pedestrian) users for example. Thus, from the
point of view of the present paper, mobility decreases
performance. It is interesting to couple this with the
account of the speed effect at the queueing theory time
scale in [4] which have shown that mobility ameliorates
performance.
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