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Introduction

◮ Cell load and the mean user throughput per cell are key
QoS/network parameters in cellular data networks. They
depend on (among other) :

◮ traffic demand
◮ base stations (BS) positioning

◮ irregularity⇒ throughput vary across cells

◮ inter-cell interference⇒ throughput in different cells
interdependent

◮ We are also interested in the mean number of users per cell

◮ In this work we propose :

◮ a semi-analytic approach to evaluate the spatial distributions
of cell load, mean number of users and mean user throughput
per cell in large heterogeneous cellular networks

◮ validated by real-network measurements performed in
operational networks



Network model

◮ BS (X1,X2, . . . ∈ R
2) locations modeled by a homogeneous

Poisson point process Φ =
∑

k∈N δXk
on R

2 with intensity
parameter λ ∈ R

∗
+

◮ Each BS Xn is characterized by a transmitting power
Pn ∈ R

∗
+

◮ BS transmitting power P1, P2, . . . are i.i.d. (independent and
identically distributed) marks of the point process Φ

◮ Propagation loss l(x) due to distance x is given by

ℓ(x) = (K |x|)β, x ∈ R
2 (1)

where K > 0 and β > 2 are given constants.

◮ Shadowing between a given base station Xn and all locations
y ∈ R

2 is modeled by some random field {Sn (y −Xn)}y∈R2

◮ The shadowing random fields {Sn (·)}n∈N∗ and the
transmitting powers {Pn}n∈N∗ are assumed independent.



Network model

Consequently,

◮ The received power at location y ∈ R
2 from BS Xn equals

L−1
n (y) =

PnSn (y −Xn)

ℓ (y −Xn)
, n ∈ N

∗ (2)

◮ We assume that each base station serves the zone (called cell)
where its signal is the strongest one :

V (Xn) =

{

y ∈ R
2 : Ln (y) ≤ min

k∈N∗\{n}
Lk (y)

}

(3)



Service model

◮ Locations of BS don’t evolve in time

◮ In HSDPA and LTE networks a given base station transmits
only if it has at least one user to serve.

◮ We take into account whether an interfering BS Xk is idling or
not, multiplying its powers Pk by the probability p(Xk) that it
is not idle in the steady state of users’ arrivals and departures.

◮ Thus the SINR equals

SINR(y,Φ) =
L−1
n (y)

N +
∑

k∈N∗\{n}

p(Xk)L
−1
k (y)

(4)

for every y ∈ V (Xn), where N is the noise power.



Service model

◮ Bit-rate of a user located at y when served alone by its BS,
called peak bit-rate, R (SINR (y,Φ))

◮ The peak bit-rate at location y has the following form [7,
Equation (3.169)]

R (SINR) = bWE [log2 [det (I + SINRHH∗)]]

where I is identity matrix, W is the frequency bandwidth, b is
a correction factor accounting for a practical performance of
wireless channel, H is a random matrix representing fading,
and E[·] is the mathematical expectation with respect to
fading. In the particular case of SISO (Single Input Single
Output) channel, we have

R (SINR) = bWE

[

log2

(

1 + SINR |H|2
)]

(5)

where H is the fading random variable.



Traffic model and service policy

◮ We shall consider variable bit-rate (VBR) traffic : users
require to transmit some volume of data at a bit-rate decided
by the network

◮ There are γ arrivals per surface unit and per time unit

◮ Each user arrives at a location uniformly distributed and
requires to download a random volume of data of mean 1/µ
bits

◮ Arrival locations, inter-arrival durations as well as the data
volumes are assumed independent

◮ Users don’t move during their calls

◮ Traffic demand per surface unit

ρ =
γ

µ
bit/s/km2



Service policy

◮ The traffic demand in cell Xn ∈ Φ equals

ρ (Xn) = ρ |V (Xn)| , n ∈ N
∗ bit/s (6)

where |V (Xn)| is the surface of area of the cell V (Xn).

◮ We shall assume that each user in a cell gets an equal portion
of time for his service. Thus, a base station located at X
serves k users located at y1, y2, . . . , yk ∈ V (X) then the
bit-rate of the user located at yj equals

1

k
R (SINR(yj,Φ)) , j ∈ {1, 2, . . . , k}

.



Local characteristics model [4]
◮ Service in cell V (X) is stable when

ρ (Xn) < ρc (Xn) :=
|V (Xn)|

∫

V (Xn)
1/R (SINR (y,Φ)) dy

(7)

called critical traffic : harmonic mean of the peak bit-rates
◮ Mean user throughput

r (Xn) = max(ρc (Xn)− ρ (Xn) , 0) (8)

◮ Mean number of users

N (Xn) =
ρ (Xn)

r (Xn)
(9)

◮ Probability that BS is not idling

p (Xn) = min (θ (Xn) , 1) (10)

where θ (Xn) =
ρ (Xn)

ρc (Xn)
= ρ

∫

V (Xn)
1/R (SINR (y,Φ)) dy

(11)
called cell load



Motivation of this work
Plot r(X) as function of ρ(X) (measurements for different cells
during different hours of the day) : no apparent relation between
local characteristics

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0  500  1000  1500  2000  2500  3000  3500  4000

U
s
e
r
 
t
h
r
o
u
g
h
p
u
t
 
[
k
b
p
s
]

Traffic demand per cell [kbps]

Throughput versus traffic per cell

Figure 1:



Dependence between cells (cell-load equations)

Using Equations (11) and (7) respectively, we deduce that the cell
load of BS Xn equals

θ (Xn) =
ρ (Xn)

ρc (Xn)
= ρ

∫

V (Xn)
R−1 (SINR (y,Φ)) dy

= ρ

∫

V (Xn)
R−1











L−1
n (y)

N +
∑

k 6=n

p(Xk)L
−1
k (y)











dy

= ρ

∫

V (Xn)
R−1











L−1
n (y)

N +
∑

k 6=n

min (θ (Xk) , 1)L
−1
k (y)











dy (12)



All parameters expressed via cell load

◮ Note here again that the the load of each BS depends on the
loads of all other BS in the network.

◮ From the result presented in [6] we can conclude the
uniqueness of the solution of (12) with θ (Xn) < 1, (∀n ∈ N

∗)
i.e. if such a solution exist then it is unique.

◮ Note also that the loads which are equal or greater than one
indicate unstable cells.

On the other hand, we can express the mean number of users (9)
and the mean user throughput (8) in each cell as function of its
load and traffic demand

N (Xn) =

[

max

(

1

θ (Xn)
− 1, 0

)]−1

, r (Xn) =
ρ (Xn)

N (Xn)
(13)



Discrete users’ positions

◮ We generate users’ positions over the network as a
homogeneous Poisson point process of density 30λ and
approximate the integral in (12) by the corresponding discrete
sum.

◮ The shadowing random variables for the different user
positions are generated as i.i.d. log-normal random variables
with logarithmic-standard deviation σS (expressed in dB).

◮ Note that the auxiliary users’ point process permits not only
to evaluate numerically the integral in (12), but also permits
to account for spatial correlation of shadowing ; the mean
spatial decorrelation distance being the average distance
between two user locations.



Constant power model

In order to evaluate the effect of the variability of the BS powers,
we shall compare the results of the above model with a model
where all the BS emit the same power. In this latter, all the BS
emit the power

P̃n = E [P1] , n ∈ N
∗

and the shadowing equals

S̃n(y −Xn) =
PnSn (y −Xn)

E [Pn]
, n ∈ N

∗ (14)

so that the received power (2) remains as the original model.



Numerical results

◮ We compare the CDF (cumulative distribution function) of
cell load, mean number of users and mean user throughput of
the different base stations at a given hour in an operational
HSDPA network (within two different cities) to the results of
the proposed method.

◮ The raw data are collected using a specialized tool which is
used by operational engineers for network maintenance.

◮ This tool measures several parameters for every base station
24 hours a day on TTI time-scale.

◮ We have also the BS coordinates which permit to estimate
the intensity λ of BS per unit surface.

◮ We choose one hour during the day and estimate the
corresponding empirical CDF of the QoS parameters.



Numerical setup for simulation

◮ We generate a Poisson process of BS with intensity λ over a
disc of radius

D = 10

√

1

πλ

◮ The distance coefficient in (1) equals K = 7117km−1, the
path loss exponent β = 3.8.

◮ The shadowing standard deviation equals σS = 8dB.

◮ The frequency bandwidth equals W = 5MHz and the noise
power is N = −96dBm. We take b = 0.3 in the peak bit-rate
expression (5) for HSDPA.

◮ We consider three-sectorial antennas with azimuths π,
π + 2π/3 and π − 2π/3 and antenna pattern described in [1,
Table A.2.1.1-2].



Numerical setup for simulation - powers

◮ We assume that the transmitting power Pn has a log-normal
distribution of logarithmic-standard deviation σP .

◮ In order to justify this model, we give the empirical CDF of
transmitting powers in dB estimated from measurements in
the operational network on Figure 2. This figure shows that
this CDF may be approximated by a normal distribution with
standard deviation σP = 5.3dB.

◮ The mean transmitting power of each BS including a global
antenna gain equals E [Pn] = 60dBm. A 10% fraction of this
power is used by the pilot channel.

◮ In the constant power model described in Section 6, each BS
emits a constant power P̃n = 60dBm and the shadowing (14)
has a log-normal distribution of standard deviation

σS̃ =
√

σ2
S + σ2

P ≃ 9.6dB



Numerical setup for simulation - powers
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Figure 2: CDF of BS powers in the operational network in the downtown
of a big city (blue) and normal distribution approximation (red).



Poisson network hypothesis

◮ Regarding spatial pattern of BS, we use Poisson model.

◮ The idea of using Poisson process to model cellular network
already exist in the literature, see for example [5].

◮ Moreover, it is shown in [2] that starting from any
deterministic pattern of BS (including the regular Hexagonal
one), when the shadowing variance becomes sufficiently high,
the radio parameters (such as the propagation loss with the
serving base station) converge to those of a Poisson model.

◮ This is a reasonable assumption, especially for urban
environment and/or indoor position of receiver.

◮ Second, deployed networks don’t follow a regular spatial
pattern, especially not those in urban and suburban
environments, so the mentioned convergence is faster.



Poisson network hypothesis

◮ For example, in some urban areas in Europe, the geographical
pattern of base stations is nearly Poissonian which is checked
in Figure 3 using Ripley’s L-function L(r) =

√

K(r)/π, where
K(r) is Ripley’s K-function [3].

◮ The other sources of irregularities, as for example non-uniform
traffic demand, are not considered in the present work.
Consequently, we will consider networks or parts of a network
where we can assume uniform spatial traffic demand (e.g.
downtown of a big city or a typical rural area).



Ripley’s function
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Figure 3: Ripley’s L-function of two patterns of base stations which are
nearly Poissonian. Note that mid-size city exhibits less irregularity than
the downtown of a big city.



Results

◮ Figures 4, 5 and 6 show the spatial distribution (across
different cells) of the cell load, mean number of users per cell
and the mean user throughput in the network deployed in the
downtown of a big city.

◮ Recall that these metrics represent, themselves, the
steady-state (averaged over time) performance characteristics
of individual cells.



Cell load : downtown of a big city
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Figure 4: CDF of cell load for the downtown of a big city obtained
either from the variable power model, from real-field measurements, or
from the model where the emitted powers are assumed constant.



Mean number of users : downtown of a big city
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Figure 5: CDF of the mean number of users for the downtown of a big
city.



Mean user throughput : downtown of a big city
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Figure 6: CDF of the mean user throughput for the downtown of a big
city.



Model input values

◮ Analogous characteristics regarding the network in a mid-size
city are presented on Figures 7, 8 and 9.

◮ The estimated network density and the traffic demand in the
downtown of a big city are, respectively, λ = 4.62km−2 and
ρ = 483kbit/s/cell.

◮ Analogous values for the mid-size city are λ = 1.27km−2 and
ρ = 284kbit/s/cell. Note that in the latter scenario the traffic
demand is smaller, but the network is less dense and more
regular (cf Figure 3).

◮ We use these values as input parameters for our model.



Cell load : mid-size city
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Figure 7: CDF of cell load for mid-size city obtained either from the
variable power model, from real-field measurements, or from the model
where the emitted powers are assumed constant.



Mean number of users : mid-size city
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Figure 8: CDF of the mean number of users for the mid-size city.



Mean user throughput : mid-size city
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Figure 9: CDF of the mean user throughput for the mid-size city.



Results explanation

◮ All figures present the distributions estimations from our
model as well as the real-field measurements. For seek of
comparison, we present also on the figures the results obtained
in the model where the emitted powers are assumed constant.

◮ The simulation curves represent the means over ten repeated
network simulations, with the horizontal bars giving the
standard deviation of this averaging. In what follows we
discuss the presented results in more details.



Results analysis

◮ In general we see a good agreement between real field
measures and the model analysis with randomized emitted
power.

◮ Under the constant power assumption the model predicts well
the median of the cell load and the mean number of users but
fails to match the spatial distribution of these characteristics.

◮ Clearly, the spatial variability of power creates more spatial
heterogeneity of these characteristics in the network.

◮ Regarding the mean user throughput the constant power
assumption fails to predict even the median.

◮ Extensions of the model, e.g. letting it account for further
sources of disparity in the deployed networks (e.g. different
heights of antennas) could perhaps improve the quality of
prediction.



Conclusion

◮ The approach based on stochastic geometry in conjunction
with queueing and information theory is developed

◮ In order to evaluate user’s QoS metrics and network parameters
◮ Spatial distributions of cell load, mean number of users and

mean user throughput are derived

◮ We validate the proposed approach by showing that it allows
to predict the performance of a real network

◮ Open questions

◮ Theoretical : stability of spatially and, more difficult,
space-time dependent processor sharing queues

◮ Investigate the effects of other sources of disparity in a network
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