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Abstract—The f -factor, which is roughly the interference to sig-
nal power ratio, plays a crucial role in the performance evaluation
of wireless cellular networks. The objective of the present paper is
to study the properties of the f -factor and establish approximations
for it which we compare to previously proposed approximations.

We consider the hexagonal network model, where the base sta-
tions are placed on a regular hexagonal grid which may be infinite.
The propagation loss is assumed to be a power of the distance
between the transmitter and the receiver. In this context, we build
a reference method to calculate the f -factor to which previously
proposed approximations as well as a new one are compared. It
is shown that the previous approximations are not always close
to the reference. One should choose the approximation carefully
since the performance of cellular networks depend strongly on the
f -factor. The results in our paper help to make the appropriate
choice. This is particularly important for operational needs as for
example dimensioning a real network.

Index Terms—Radio communication, Broadband communica-
tion, Communication system performance, Interference, Geometry.

I. INTRODUCTION

When we attempt to evaluate the performance of wireless
cellular networks, the so-called f -factor or interference factor,
appears naturally. Indeed, it may be defined as the ratio of the
interference to the signal power received at a given location
when all the base stations transmit the same power. But its
importance is not limited to this restrictive case. It plays an
important role in the resource (power and bandwidth) allocation
problem for broadband systems which use either Code-Division
Multiple Access (CDMA) or Orthogonal Frequency-Division
Multiple Access (OFDMA) as shown in [6] and [4] respectively.
It is shown there that the resource allocation problem admits
a solution when a simple condition on the bit-rates of the
users expressed in terms of the f -factor is satisfied. Moreover,
it is shown that the QoS perceived by the users (blocking
probability, delay, throughput) may be evaluated analytically
by using appropriate queueing models when we know the f -
factor. This leads to efficient and rapid capacity planning and
dimensioning methods.

Thus the f -factor plays a crucial role in the performance
evaluation of wireless cellular networks. The objective of the
present work is to study the properties of the f -factor and to
establish approximations for it which we compare to previously
proposed approximations.

Note first that the f -factor depends on the geometry of the
network (base stations positions). More precisely, the effect of
the network geometry on the performance may be characterized
through its effect on the f -factor. For this reason, it is sometimes
called the geometric factor. On the other hand, the number
of base stations in real cellular networks becomes increasingly
large due to the continual extension of their coverage and also
due to the densification induced by the traffic increase. Thus it

is important to study large cellular networks, and eventually the
limit case when the network is infinite.

The remaining part of this paper is organized as follows. In
the following two subsections of the introduction we present
briefly the related work and describe our model. The basic
properties of the f -factor (and in particular a reference method
to calculate it) are given in Section II. In Section III we study
the variations of the f -factor versus user location. Previously
proposed approximations as well as a new one are compared to
the reference value in Section IV.

A. Related works

The importance of the f -factor as a key factor in cellular
networks has been recognized since long time in many publi-
cations (see for example [9], [15]). The paper [14] focuses on
the f -factor average over the cell, and in particular the effect of
shadowing on this average. Frequently the f -factor is computed
by simulations (see for example [12]). In [11] the probability
distribution function of the f -factor is studied.

More recently, many papers [1], [5], [6], [8] propose explicit
approximations of the f -factor and its moments (mean and
variance). Nevertheless, the properties of the f -factor are not
widely known, and no comparison between its approximations
have been published yet.

B. Model description

Consider a network composed of base stations (BS) located on
the plane R2. We denote by Lu,m the propagation-loss between
BS u and location m. We shall only account for the distance
effect (no shadowing), that is Lu,m is some function of the
distance between u and m. Typically we shall consider

Lu,m = (K |u−m|)η (1)
where K > 0 and η > 2 are two constants; and |u−m|
designates the distance between u and m.

Each BS u serves some geographic zone called cell. We
denote m ∈ u to say that the location m is served by the BS u.
Hence we use the same letter to designate the BS and its cell. We
assume first that each BS is equipped with an omnidirectional
antenna. Then we extend the results to sectorial antennas.

We consider the most popular hexagonal network model,
where the base stations are placed on a regular hexagonal
grid which may be infinite. The cell of BS u is defined by{
m ∈ R2; |u−m| ≤ |v −m| for all BS v

}
.

1) Problem formulation: Fix some base station u. The cor-
responding f -factor is a function of the location m defined by

f(m) =
∑
v 6=u

Lu,m
Lv,m

, m ∈ u

where the summation is over all BS v different from u.
We aim to study the properties of the function f (m) and to

establish a suitable approximation for it.



II. BASIC PROPERTIES

We begin by studying f as function of the propagation-loss
parameters K and η (see Equation (1)). First observe that the
f -factor is independent of the constant K, thus we may take
K = 1 without loss of generality.

Let ∆ be the distance between two adjacent base stations. If
we make a homothecy, then all the distances are multiplied by
the same factor, thus the f -factor doesn’t change. Therefore we
can fix ∆ = 1 without loss of generality.

For a fixed location m ∈ u, the f -factor is a non-increasing
function of η. (Indeed, fix m ∈ u. For each v 6= u, |u−m| ≤
|v −m| thus Lu,m/Lv,m = (|u−m| / |v −m|)η is a non-
increasing function of η; from which the desired result follows.)

Since all the base stations play a symmetric role, we consider
a given one, say u, and take its position as the origin of the
coordinate system. The corresponding cell is a Hexagon of
center u.

A. Decomposition

We shall first observe that, for a given BS u, the f -factor may
be decomposed into a sum of terms; each one corresponding to
the contribution of the BSs located on a hexagon admitting u
as center. The first hexagon corresponds to the six closest BSs
to u.

More precisely, note that when the BS u is fixed, the other
BSs are located on successive hexagons having u as center and
having increasing radii (See Fig. 1). These hexagons are called
levels and denoted L1,L2, . . .. We may decompose f(m) over
the different levels as follows (similarly to [11, Eq. (41)])

f(m) =
∑
k≥1

fk(m)

where
fk(m) :=

∑
v∈Lk

Lu,m
Lv,m

.

level 2

level 1

Fig. 1. The first two levels L1 and L2.

In the following Lemma we shall express the contribution of
the BSs located on a given level in terms of the contribution of
the BSs located on the first one.

Lemma 1: We take a BS u as the origin of the coordinate
system and identify R2 with the complex plane C. We have, for

all m ∈ u, f1 (m) = |m|η
∑5
l=0

∣∣∣m− ei lπ3 ∣∣∣−η . Moreover,

f2(m) = f1

(m
2

)
+ f1

(
m√

3
e−i

π
6

)
and more generally,

fk(m) =
k−1∑
l=0

f1

(
m√

k2 + l2 − kl
e−i

lπ
3k

)
, k ≥ 2.

Proof: The expression of f1 (m) is immediate. An inspec-
tion of Fig. 1 shows that Lk comprises 6k BSs. We may decom-
pose Lk into k groups of BSs indexed by l = 0, . . . , k−1; each

group l is composed of 6 BSs being at distance
√
k2 + l2 − kl

from the center. Consider the polar coordinates with respect to
the central BS as origin. Then the angular coordinate of the
first BS of each group l is lπ

3k . Recalling that f is invariant by
homothecy, we deduce that the contribution of the l-th group is
f1

(
m√

k2+l2−kle
−i lπ3k

)
which finishes the proof.

B. Calculus precision

Obviously, we have f(m) ≥
∑n
k=1 fk(m) for all integer n.

We may estimate the f -factor with the sum in the right-hand side
of the previous inequality. But how many terms are necessary
to guarantee some precision? The following approximation will
help to answer this question.

Approximation 1: We have
fk(m) ' k−(η−1)f1(m)

and

f(m)−
n∑
k=1

fk(m) '

[
ζ (η − 1)−

n∑
k=1

k−(η−1)

]
f1(m)

where ζ is the Riemann zeta function given by ζ (x) =∑∞
k=1 k

−x.
Proof: An inspection of Fig. 1 shows that Lk comprises 6k

BSs; six of which are at distance k from the center and the other
6 (k − 1) BSs are at distances slightly less than k. Let Hk be
the set of the 6 BSs situated at distance k from the center. Then
making the approximation as in [9] that, all the base stations of
level k are at the distance k, we get

fk(m) ' k
∑
v∈Hk

Lu,m
Lv,m

' k

(
k−η

∑
v∈L1

Lu,m
Lv,m

)
= k−(η−1)f1(m).

Thus we get the approximation

f(m)−
n∑
k=1

fk(m) =
∑

k≥n+1

fk(m)

'
∑

k≥n+1

k−(η−1)f1(m)

=

[
ζ (η − 1)−

n∑
k=1

k−(η−1)

]
f1(m).

Using the Approximation 1, we deduce that the relative error
if we estimate f(m) with

∑n
k=1 fk(m) is

f(m)−
∑n
k=1 fk(m)

f(m)
'
ζ (η − 1)−

∑n
k=1 k

−(η−1)

ζ (η − 1)

= 1−
∑n
k=1 k

−(η−1)

ζ (η − 1)
.

We shall consider that the f -factor is calculated sufficiently
precisely when the relative error is less than some given ε
sufficiently small. Therefore, for each η, we consider a number
of levels equal to the smallest value of n such that the right-hand
side of the above equation is less than ε.

Example 1: We are particularly interested in η ∈ [3, 5]
which comprises the most frequent values in practical cellular
networks. Fig. 2 shows the number of levels n as function of
the propagation exponent η ∈ [3, 5] for different values of the
precision ε = 0.01, 0.05, 0.1. We observe that n is decreasing
with η. In other words, the calculus effort to calculate the f -
factor with a given precision is decreasing with the propagation
exponent. Moreover n may be large when both η and ε are small.
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Fig. 2. Number n of levels as function of the propagation exponent η for
different precisions ε = 0.01, 0.05, 0.1.

From now on we consider as reference value the f -factor
calculated with the number of levels corresponding to the
precision ε = 0.05.

III. VARIATIONS VERSUS USER LOCATION

A. f -factor versus user location

We take a BS u as the origin of the coordinate system. Each
location m ∈ u may be viewed as a complex number reiθ where
(r, θ) are the polar coordinates of m. Then f (m) may be viewed
as function the polar coordinates r and θ.

For each fixed r, the f -factor is a periodic function of θ with
period π/3 (which is due to the same periodicity of the positions
of the BSs v 6= u) and symmetric around `π/6 (for all ` ∈
{0, 1, . . . , 11}). If f is differentiable with respect to θ, then it
admits an extremum at `π/6. We will see numerically that it is
in fact a maximum at `π/3 and a minimum at (2`+ 1)π/6.

Example 2: We take a propagation exponent η = 3.38 (which
is a typical value in urban areas). Fig. 3 represents f(m) as
function of the user location m with cartesian coordinates (x, y)
related to polar coordinates by x+iy = reiθ. We observe that the
f -factor variation with respect to the angle θ is less important
than that with respect to the distance r between the user and its
serving BS. We calculate numerically the f -factor at cell edge
and observe that it is maximum for θ = 0 and minimum for
θ = π/6 (equal to 2.2 and 1.8 respectively).
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Fig. 3. f -factor as function of user location m of cartesian coordinates (x, y).

B. Average over the angle

Recall the observation made in Example 2 that the f -factor
variation with respect to the angle θ is less important than that
with respect to the distance between the user and its serving BS.
Thus in some applications, it may be interesting to assume that

the f -factor depends only on this distance. In this case, we take
as representative value of the f -factor (at a given distance r) its
average over the angle θ, that is

f̄(r) =
1

2π

∫ 2π

0

f
(
reiθ

)
dθ =

6
π

∫ π/6

0

f
(
reiθ

)
dθ (2)

where the second equality is due to the periodicity of f (and
its symmetry around θ = π

6 ). We have already observed that
for fixed distance r, the f -factor is maximum for θ = 0 and
minimum for θ = π

6 . This suggests the approximation

f̄(r) ' f
(
reiπ/12

)
(3)

Numerical calculus presented in the following example show
that the above approximation is good.

Example 3: Fig. 4 plots the functions f̄(r) and f
(
reiπ/12

)
of the distance r for η = 3, 4, 5. We observe that the approxi-
mation (3) is good.
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C. Average over the cell

In some applications we are interested in the average of the
f -factor over the cell, that is

f̄ =
1
Su

∫
u

f (m) dm

where Su designates the surface of the cell u.
In order to simplify the calculus, we approximate the hexago-

nal cell with the (virtual) disc whose area is equal to that of the
hexagon. This is illustrated in Fig. 5. We define the cell radius
R as the radius of this disc.

R ∆

Fig. 5. Hexagon to disc approximation.

Lemma 2: [6, Lemma 1 p.10] The cell radius R is related
to the distance ∆ between two adjacent hexagons by

R = ∆

√√
3

2π
(4)

which gives numerically R ' 0.525 ∆.



Thus we get the following approximations

f̄ ' 1
πR2

∫ R

0

∫ 2π

0

f
(
reiθ

)
rdrdθ

=
2
R2

∫ R

0

f̄(r)rdr ' 2
R2

∫ R

0

f
(
reiπ/12

)
rdr

It is not difficult to calculate the integral in the right-hand
side of the above equation. Nevertheless, we aim to get insight
on how f̄ varies as function of η and to establish an explicit
approximation of this function.

Example 4: It is shown in [2] for the so-called Poisson-
Voronoi model (which is different from the hexagonal one
considered in the present study) that f̄ = 2/ (η − 2). This
suggest to look for an approximation of f̄ in the hexagonal
model of the form f̄ ' a/ (η − 2) for some constant a to be
calculated. We make this calculus by making a least square
correlation between the values of f̄ for η ∈ [3, 5] and the
function 1/ (η − 2). This gives

f̄ ' 0.91
η − 2

(5)

For some applications, we also need to calculate f2 :=
1
Su

∫
u
f (m)2 dm and lf := 1

Su

∫
u
Lu,m
L(R) f (m) dm where

L (R) = (KR)η . Similarly to f̄ , we get the following approxi-
mations

f2 ' 0.69
η − 2

+
0.64

(η − 2)2

and
lf ' 0.6

η − 2

Fig. 6 shows f̄ , f2 and lf as functions of η as well as their
approximations given in the above three equations. This figure
shows that the approximations are good enough.

Applying Equation (5) for η = 3, 4, 5 we get f̄ =
0.91, 0.45, 0.30 respectively, whereas from [14, Table II] we
get f̄ = 0.77, 0.44, 0.30 respectively. Note that there is a good
agreement between our result and that of [14, Table II] for
η = 4, 5. The disagreement for η = 3 is due to the fact that [14,
Table II] considers two levels of interfering BSs which is too
small when η = 3 (see Example 1).
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IV. APPROXIMATIONS

In order to get an approximation of the f -factor, we consider
the number of levels corresponding to a precision εa = 0.1 and
denote it by fa(m).

Example 5: We take a propagation exponent η = 3.38.
Figure 7 (left) represents fa(m) as function of the user location

m. Note that fa(m) captures the essential effects observed for
f(m) (see Example 2). Fig. 7 (right) represents the relative error
1 − fa(m)/f(m) as function of the user location m. Observe
that the relative error is comprised between 0.03 at cell edge and
0.06 at cell center. (Observe also that at cell edge the relative
error depends on θ, but it remains approximately equals to 0.03.)
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Fig. 7. Left: f -factor approximation fa(m) as function of the user location
m = (x, y). Right: Relative error 1 − fa(m)/fp(m) as function of the user
location m = (x, y).

We may approximate f
(
reiπ/12

)
in the right-hand side of (3)

by fa
(
reiπ/12

)
, thus we get

f̄(r) ' fa
(
reiπ/12

)
(6)

In [6, p.212] the following approximation for the f -factor,
denoted fb(r), is proposed

fb(r) = ζ(η−1)

(
L (r)

L(∆− r)
+

L (r)
L(∆ + r)

+
4L (r)

L
(√

∆2 + r2
))
(7)

where ζ is the Riemann zeta function. In [8, Eq. (10)] another
approximation is proposed1, that is

f c(r) =
2rη

R2 (η − 2) (∆− r)η−2
(8)

where R is given by (4). (The approximation proposed in [5]
is too loose since it considers only the six neighboring base
stations.)

The following example compares the approximations of f̄(r)
described above.

Example 6: We represent the functions f̄(r), fa
(
reiπ/12

)
,

fb (r) and f c (r) of the distance r for η = 3, 4, 5 on Fig. 8.
We observe that the approximation fa is good where as the
approximation fb and f c may be far from the exact value f̄(r).
This is particularly true for f c when η ≥ 4.

A. Discussion
Note that the calculations of the reference value f̄(r) with

the help of (3) (or the approximation fa
(
reiπ/12

)
) are not too

time consuming. Indeed, the number of terms to be calculated
is not too large as shown in Example 1. Thus we recommend
to use these methods if one seeks for good precision. This is
particularly the case for operational use as for example dimen-
sioning a real network. Nevertheless when only a first rough
result is desired, we may also use the approximation fb (r) given
by (7) which overestimates the f -factor, thus leading to a safe
dimensioning (i.e., the QoS really perceived by the users would
be better than the target value used in dimensioning). Finally,
note that the use of f c (r) given by (8) when η ≥ 4 leads to
an underestimation of the f -factor by more than 30% which
may lead to unsafe dimensioning (i.e., the QoS really perceived
by the users may be much worst than the target value used in
dimensioning).

1Note that the quantity calculated in [7, Eq. (II.7)] is
∑
v 6=u

Lv,m
Lu,m

(for m ∈
u) which is not the f -factor.
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B. Sectorial antennas

The f -factor with sectorial antennas was first investigated
in [3], [13] which are the basis of [6, §13.C]. The main result is
that the f -factor with S-sectorial antennas, denoted by f (S) (m),
is expressed in terms of the one with omnidirectional antennas,
denoted by f(m), and the radiation pattern of the sectorial
antennas G (θ). Assume that there are S sectors (typically
S = 3) which we index by s = 0, 1, . . . , S − 1. For a location
m in sector 0, we have from [6, End of p.222]

f (S) (m) '
∑S−1
s=1 G (θ − s2π/S)

G (θ)
+

Ḡ

G (θ)
f(m) (9)

where θ = arg (m) and Ḡ = 1
2π

∫ π
−π
∑S−1
s=0 G (θ − s2π/S) dθ.

(The formula in [8, Equation (21)] is a particular case of the
above one for S = 3.) For more details and in particular for
expressions of the f-factor moments see [6, §13.C].

C. Comparison to measurements

Measurements on the field as well as results of calculations of
the f -factor for an irregular network (with 3-sectorial antennas)
are reported in [10]. It is shown in particular that there is a good
fit between the f -factor mean deduced from measurements and
that from calculations. The obtained value is f̄ (3) ' 0.6.

Unfortunately the value of η and the antenna radiation pattern
are not given in [10]. Thus we take the typical value in urban
regions η = 3.38 and consider a sectorial antenna with perfect
radiation pattern (in which case f̄ (3) = f̄ ). Using Equation (5)
we get f̄ (3) = f̄ ' 0.7.

As regards to the variations of the f -factor with distance, the
simulations reported in [10] give an f -factor varying between
0.02 at cell center and 1.7 at cell edge. If we apply (2) with η =
3.38 we get an f -factor varying between 0 at cell center and 2 at
cell edge. This shows a relatively good agreement between the
results of our calculus and those in [10]; despite the irregularity
of the considered network there and the lack of information
about the value of η and the antenna pattern.

V. CONCLUSION

We build a method to calculate the f -factor with a desired
precision. Taking a small value of the precision permits to
get a reference value for the f -factor. Calculating the f -factor
with this reference method, we observe numerically that the
f -factor is: (1) increasing with the distance between the user
and its serving base station; and (2) slowly varying with the
angle when the distance is fixed. Moreover, we establish good
approximations of the f -factor average over the angle when the
distance is fixed, and over the cell.

Previously proposed approximations for the f -factor as func-
tion of distance as well as a new approximation are compared

to the reference value. It is shown that the previous approx-
imations are not always close to the reference. One should
choose the approximation carefully since the performance of
cellular networks depend strongly on the f -factor. The results
in our paper help to make the appropriate choice. In particular,
since the calculations of the f -factor reference value (or the
approximation proposed in the present paper) are not too time
consuming, we recommend to use these methods if one seeks
for good precision. This is particularly the case for operational
use as for example dimensioning a real network.
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