Theoretically Feasible QoS in a MIMO Cellular Network Compared to the Practical LTE Performance

Mohamed Kadhem Karray Miodrag Jovanovic

Orange Labs

June 2012

Paper [4]
Theoretically feasible bit-rates

Ergodic capacity

Theoretical versus practical performance

User’s QoS calculation

Conclusion
Theoretically feasible QoS in a MIMO Cellular Network Compared to the Practical LTE Performance

Mohamed Kadhem Karray, Miodrag Jovanovic

Introduction

- The objective is to build a *global analytical approach* for the evaluation of the quality of service perceived by the users in wireless cellular networks which is calibrated in some reference cases.
- QoS model for LTE (MIMO/OFDM) based on information theory, queueing theory and practical LTE system performance (3GPP simulations)
- The present work exploits previous results such as:
 - practical coding schemes performance may be evaluated by a modification of the famous Shannon’s formula $\log_2 (1 + \text{SNR})$
Theoretically feasible bit-rates

Model

- **Channel representation:**

 \[Y_n = H_u X_{u,n} + J_n + Z_n, \quad n = 1, 2, \ldots \]

- channel input \(X_{u,n} \in \mathbb{C}^t \)
- channel output \(Y_n \in \mathbb{C}^r \)
- fading matrix \(H_u \in \mathbb{C}^{r \times t} \)
- interference

 \[J_n = \sum_{v \neq u} H_v X_{v,n} \quad (1) \]

- noises \(Z_1, Z_2, \ldots \) are i.i.d. *circularly symmetric Gaussian* random variables
Theoretically feasible bit-rates

Model

- **Channel characteristics:**
 - flat fading
 - *quasi-static* model for fading process
 - single user detection

- **Notation:**
 - user’s base station u, interfering base stations v
 - MIMO with t transmitting and r receiving antennas
 - time divided into time-instants $n = 1, 2, \ldots$
 - *covariance matrix* of a random vector X is denoted by $\Gamma_X = E[XX^*]$.

Ergodic capacity
Theoretical versus practical performance
User's QoS calculation
Conclusion
Theoretically feasible bit-rates

Deterministic fading: Feasible rates

- Assume fading deterministic.
- *Feasible* set of users bit-rates calculated under assumptions:

 - Signals of different BS are independent.
 - Signal $X_{u,n}$ transmitted by the serving BS is CN with covariance matrix $\Gamma_{X_{u,n}} = \frac{P}{t} I_t$ (power equi-partition).
 - Signal $X_{v,n}$ transmitted by interfering BS $v \neq u$ is CN with covariance matrix $\Gamma_{v} = \frac{P}{t} I_t$ (again power equi-partition).
 - Transmitted signals are independent from noises.
 - Signals transmitted at different time instants are independent.
Theoretically feasible bit-rates

Deterministic fading: Feasible rates

- The covariance matrix of the interference (1) equals

\[
\Gamma_J = \frac{P}{t} \sum_{v \neq u} H_v H_v^*
\]

- Interference plus noise \(Z'_n := J_n + Z_n \) is \(\mathcal{CN} \) with covariance matrix

\[
\mathcal{N} := NI_r + \frac{P}{t} \sum_{v \neq u} H_v H_v^*
\]

- Consequently:

\[
\Gamma_Y = \frac{P}{t} H_u H_u^* + \mathcal{N}
\]
Theoretically feasible bit-rates

Deterministic fading: Feasible rates

- Mutual information at a given time-instant; that is
 \[I(X_{u,n}; Y_n) = \log_2 \det \left(I_r + \frac{P}{t} H_u H_u^* N^{-1} \right) \]

- Capacity \(C = \sup I(X_{u,n}; Y_n) \); thus
 \[C \geq \log_2 \det \left(I_r + \frac{P}{t} H_u H_u^* N^{-1} \right) \]

- The right-hand side of the above equation gives a feasible bit-rate for the considered user.

- With propagation-losses \(L_u \) and \(\{L_v\}_{v \neq u} \) one obtains:
 \[C \geq \log_2 \det \left(I_r + \frac{P}{t} \frac{H_u H_u^* N^{-1}}{L_u} \right) \]

where
\[N = NI_r + \frac{P}{t} \sum_{v \neq u} \frac{H_v H_v^*}{L_v} \]
Theoretically feasible bit-rates

Ergodic capacity

Proposition: The *ergodic capacity* $E[C]$ with respect to fading and assuming $E[H_vH_v^*] = I_r$, for all BS v, is given by:

$$E[C] \geq E[\log_2 \text{det} (I_r + \text{SINR}H_uH_u^*)]$$ \hspace{1cm} (4)

where the expectation is with respect to the fading H_u with the serving BS and

$$\text{SINR} = \frac{(P/t)/L_u}{N + (P/t)\sum_{v \neq u} 1/L_v}$$ \hspace{1cm} (5)
Theoretically feasible bit-rates
Ergodic capacity

Proof: By the properties of the conditional expectation, we have $E[C] = E[E[C|H_u]]$. Equation (2) implies that

$$E[C|H_u] \geq E \left[\log_2 \det \left(I_r + \frac{P}{t} \frac{H_u H_u^*}{L_u} \mathcal{N}^{-1} \right) \right]$$

where \mathcal{N} is given by (3). Using the convexity of the function $\mathcal{N} \mapsto \log_2 \left[\det \left(I_r + \frac{P}{t} \frac{H_u H_u^*}{L_u} \mathcal{N}^{-1} \right) \right]$ on the set of positive definite matrices of $\mathbb{C}^{r \times r}$ (see [3, Lemma II.3]) and Jensen’s inequality, we deduce that

$$E[E[C|H_u]] \geq E[\log_2 \det \left(I_r + \frac{P}{t} \frac{H_u H_u^*}{L_u} E[\mathcal{N}|H_u]^{-1} \right)]$$

$$= E[\log_2 \det \left(I_r + \frac{P}{t} \frac{H_u H_u^*}{L_u} E[\mathcal{N}]^{-1} \right)]$$

$$\geq E[\log_2 \det (I_r + H_u H_u^* \text{SINR})]$$
Theoretical versus practical performance

AWGN

- Consider (AWGN) SISO channel without neither fading nor interference
- *Spectral efficiency* defined as the ratio of the bit-rate by the bandwidth which equals $\log_2 \left(1 + \frac{P/L_u}{N} \right)$
- LTE system spectral efficiency in this AWGN context is well approximated by

$$s \simeq a \log_2 \left(1 + \frac{P/L_u}{N} \right) \quad (6)$$

- In the AWGN context, the 3GPP [2, §A.2] shows that $a \simeq 0.5$
Theoretical versus practical performance

AWGN

- Compare analytical to Orange’s simulator results:

![Graph showing theoretical and practical performance comparison](image-url)
Theoretical versus practical performance

Fading and interference

- Goal is to account for fading, MIMO and interference

\[S(\text{SINR}, t, r) = a E \left[\log_2 \det (I_r + H_u H_u^* \text{SINR}) \right] \] \hspace{1cm} (7)

- What is the practical LTE spectral efficiency compared to the above analytical expression?

- Practical performance results: Orange’s simulator compliant with the 3GPP recommendation [1] in the so-called *calibration* case

- We search for some \(b \) such that

\[s \simeq b \times S(\text{SINR}, t, r) \] \hspace{1cm} (8)
Theoretical versus practical performance

Fading and interference

- Results of the linear fitting (8)

<table>
<thead>
<tr>
<th>MIMO</th>
<th>Scheduler</th>
<th>b</th>
<th>residual stand. dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1×2</td>
<td>RR</td>
<td>0.83</td>
<td>0.45</td>
</tr>
<tr>
<td>1×2</td>
<td>PF</td>
<td>1.02</td>
<td>0.65</td>
</tr>
<tr>
<td>2×2</td>
<td>PF</td>
<td>0.67</td>
<td>0.74</td>
</tr>
<tr>
<td>4×2</td>
<td>PF</td>
<td>0.49</td>
<td>0.76</td>
</tr>
</tbody>
</table>
Theoretical versus practical performance

SINR

- SINR obtained by analytical approach is compared to 3GPP simulation results
- Our model is similar (details in the article) to that used by 3GPP
- Difference is the use of both, planar and toroidal network patterns and not only the planar one
Analytical versus 3GPP results for coupling gain
Analytical versus 3GPP results for SINR

![Graph showing CDF of SINR for 3GPP simulations and different network topologies](image_url)
Theoretical versus practical performance

Spectral efficiency

- We calculate the spectral efficiency corresponding to its SINR by relation (8)
- CDFs of the normalized user throughput

![CDF of normalized user throughput](image_url)
Theoretically feasible QoS in a MIMO Cellular Network Compared to the Practical LTE Performance

Mohamed Kadhem Karray, Miodrag Jovanovic

Theoretical versus practical performance

Spectral efficiency

- **Mean** of the spectral efficiencies at the different locations

<table>
<thead>
<tr>
<th>MIMO</th>
<th>Scheduler</th>
<th>Simus</th>
<th>Analytic</th>
<th>Simus</th>
<th>Analytic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 × 2</td>
<td>RR</td>
<td>1.01</td>
<td>1.00</td>
<td>0.50</td>
<td>0.69</td>
</tr>
<tr>
<td>1 × 2</td>
<td>PF</td>
<td>1.32</td>
<td>1.23</td>
<td>0.80</td>
<td>0.85</td>
</tr>
<tr>
<td>2 × 2</td>
<td>PF</td>
<td>1.43</td>
<td>1.41</td>
<td>0.84</td>
<td>1.00</td>
</tr>
<tr>
<td>4 × 2</td>
<td>PF</td>
<td>1.54</td>
<td>1.54</td>
<td>0.95</td>
<td>1.18</td>
</tr>
</tbody>
</table>
User’s QoS calculation

- Dynamic context for VBR calls is considered for ultimate QoS evaluation
- Information theory and queueing theory time-scales
- Assuming a round robin scheduler, the peak bit-rate at each location equals the system bandwidth times the spectral efficiency at that location given by Equation (8)
- Let ρ be the traffic demand (in bit/s) per cell and ρ_c is the so-called critical traffic demand
- Numerical setting of the calibration case with no/high mobility of users and interference/canceled interference
Throughput per user vs cell radius for traffic density 300kbit/s/km² (typical in urban area)
Conclusion

- Analytical expression of users bit-rates which are feasible from the information theory point of view
- Throughput perceived by the users in the long run of users arrivals and departures is given
- Ultimate improvement expected from the interference cancellation is demonstrated
- Advantages of the present analytical method (much faster than pure simulations, in some aspects goes beyond the capabilities of classic simulators etc...)
- Future work
Theoretically feasible QoS in a MIMO Cellular Network Compared to the Practical LTE Performance

Mohamed Kadhem Karray, Miodrag Jovanovic

Conclusions

3GPP.
In 3GPP Ftp Server, 2010.

3GPP.
In 3GPP Ftp Server, September 2010.

S.N. Diggavi and T.M. Cover.
The worst additive noise under a covariance constraint.

M. K. Karray.
Spectral and energy efficiencies of OFDMA wireless cellular networks.