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A queueing theoretic approach to the dimensioning
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bit-rate calls
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Abstract—The traffic demand in wireless cellular networks
is increasing rapidly, especially for the data transmission. It is
crucial to characterize the network parameters, such as the num-
ber of base stations, permitting to cope with this increase. Such
characterization, called dimensioning, is the central objective of
the present paper.

Our approach consists of using results from queueing theory
in order to build a rapid and accurate method to calculate the
quality of service (QoS) perceived by the users. The comparison
of the results of this method to those of 3GPP simulations for
some LTE configurations permits to validate the accuracy of the
proposed approach.

Once validated, this approach is used to solve the dimensioning
problem. In doing so, we take into account the dependence
between the interference and the traffic demand, and compare
the results to those of the classical assumption neglecting such
dependence. Therefore, the proposed approach uses the 3GPP
link simulation results and goes beyond by solving rapidly QoS
evaluation and dimensioning problems.

Keywords-Dimensioning, Traffic, Interference, Load, QoS, Cel-
lular, Wireless

I. INTRODUCTION

The traffic demand in wireless cellular networks is increas-
ing rapidly and is expected to explode in the next decade.
To respond efficiently to this demand the new generation of
mobile cellular systems called LTE (Long Term Evolution)
is developed as a successor of the currently deployed 2G
(GSM) and 3G (HSDPA) systems. LTE brings significant
improvements of spectral efficiency primarily using OFDM
(Orthogonal Frequency Division Multiplexing) which dimin-
ishes significantly the intersymbol and intracell interference
and MIMO (Multiple Input Multiple Output) antennas that
exploit space/time diversity.

The deployment of such networks, frequently based on
coverage conditions should now be revised to account for this
traffic increase; and in particular, a densification is sometimes
required. But how many sites are required to satisfy a given
traffic demand with a specified quality of service target? This
is the dimensioning problem.

The objective of the present work is to develop an approach
based on queueing theory to solve this problem in an efficient
and rapid way.
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We focus on variable bit-rate (VBR) traffic; that is users
requiring some volume of date to transmit at a bit-rate which
may be decided by the network. In this case, the traffic demand
may be expressed in bit/s/km2 and the quality of service in
term of the throughput (in bit/s) offered to the users in the
long run of arrivals and departures.

A. Related work

The dimensioning of cellular networks is often treated from
a coverage or static capacity point of view. Basically one
aims to assure that the bit-rate (or the SINR) of a permanent
user exceeds some target value with a high probability. To
do so, in [1] the cumulative distribution function (CDF) of
the so-called effective SINR (‘averaged’ over the different
OFDM subcarriers) is calculated with the help of a Gaussian
approximation. Then this CDF is used to assure the coverage
condition. A similar approach is adopted in [2] where other
approximations for the CDF of the SINR are proposed. In
these works the quality of service perceived by the users (i.e.
throughput obtained by each of them) in the long run of their
arrivals and departures is not calculated. This dynamic context
is the main focus of the present paper.

The dimensioning problem in this dynamic context may,
conceptually, be solved using a simulation approach such as
that proposed in [3] by 3GPP (3rd Generation Partnership
Project), a group of industrial actors. Each contributor devel-
ops his own simulation tool and compares his results to those
of other contributors on some calibration cases. There are
some other simulation tools (not necessarily compliant with
3GPP) such as LTE-Sim [4] developed by TelematicsLab, LTE
simulator developed by University of Vien [5], [6] and LENA
tool [7], [8] developed by CTTC.

The simulation approach requires such a huge amount
of time that it is useless in the context of dimensioning.
Indeed, calculating the users quality of service for a particular
network configuration by 3GPP simulations takes up to weeks
of calculation, and thus the dimensioning problem, which
requires tens of such calculations, would take about a year!
Analytic alternatives to the pure simulations have already been
extensively proposed and studied for VBR calls. They are
essentially based on queueing theory.

Information theoretic formulae are proposed in [9], [10]
to approximate real link performance in a static context; i.e.
for a given population of the users. The dynamics of users
arrivals and departures are taken into account in [11], [12], [13]
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assuming that the base stations are always transmitting their
maximal power. In this context , the peak bit-rate at a given
location is defined as the bit-rate obtained by a user at that
location assumed alone in the cell. The quality of service
perceived by the users in the long run of their arrivals and
departures is then calculated using multi-class processor shar-
ing models [14], [15, Proposition 3.1]. The effect of mobility
on the users’ QoS is studied in [16, §4], [17].

Indeed, the base station emit only when they have at least
one user to serve, and thus interference depends on the traffic
of other base stations. In order to account for this dependence,
the authors of [18] describe a fixed-point problem and propose
to solve it iteratively.

B. Our contribution

In the present paper we build an analytical approach rather
than a new simulation tool:

• We account for the dynamics of call arrivals and depar-
tures and calculate within this context the QoS perceived
by users. This represents a step forward compared to the
classical coverage (or static capacity) point of view.

• We continue the idea in [18] of studying the dependence
of load on traffic demand by developing an analytical
approach based on queueing theory.

• We validate our whole approach by comparing our result
to those of 3GPP simulations [3]; and illustrate it by
solving involved dimensioning problems within small
computation times.

C. Paper organization

Section II shows how to calculate the QoS perceived by
the users from the so-called peak bit-rates at each location.
Section III gives the relation of these peak bit-rates to the
SINR called link level relation and shows how to account for
the dependence between the interference and the traffic de-
mand with the help of the results of Section II. In Section IV,
the link level relation is calibrated and the global approach
is validated using 3GPP simulations. Moreover, we illustrate
in this section our approach by solving crucial dimensioning
problems.

D. Notations

We give the notations in their order of appearance in the
text:

• J number of possible locations of the cell. D =
{1, 2, . . . , J} set of locations in the cell.

• Rj peak bit-rate at each location j ∈ {1, 2, . . . , J}.
• xj number of users at location j. N total number of users

in the cell.
• φj portion of time allocated to a user at location j.
• rj bit-rate allocated to a user at location j.
• λj inverse of the inter-arrival duration at location j. µj

inverse of the volume of data (in bits) to be transmitted at
location j. ρj = λj/µj traffic demand at location j. ρ =∑J

j=1 ρj total traffic demand in the cell. λ =
∑J

j=1 λj
total arrival rate.

• ρc critical traffic demand. θ = ρ
ρc

cell load.
• π (·) steady state the distribution of the configuration of

users.
• N̄j , T̄j , r̄j mean number of users, delay and throughput

per user at location j.
• N̄ , T̄ , r̄ mean number of users, delay and throughput per

user in the cell.
• K number of mobile categories.
• P̃ maximal power transmitted by a base station. W total

system bandwidth.
• b gap of capacity of real systems compared to the ultimate

performance given by information theory.
• Lv propagation loss with base station v. SINR signal

to interference and noise ratio. ψ (·) link performance
function.

• I (t) interference at time t. f interference factor.

II. USER’S QOS

We consider a cell comprising a finite set {1, 2, . . . , J}
of possible locations. We denote by Rj the peak bit-rate at
each location j ∈ {1, 2, . . . , J} of the cell; that is the bit-
rate allocated by the base station to the user at this location
assuming that: (1) the user is alone in the considered cell; and
(2) the other base stations transmit at their maximal powers
(this assumption will be revisited later).

We describe now the allocation of the resources to the
different users present in the cell at a given time. Let xj be
the number of users at location j and x = (x1, x2, . . . , xJ)
be the vector counting the number of users at each location
called configuration of the users. Assume that the base station
allocates to each user at location j a specific portion of time
φj depending on its location, then such user gets the bit-rate

rj = φjRj (1)

Writing that the sum of the time portions may not exceed 1;
i.e.

∑J
j=1 xjφj ≤ 1, we get the following constraint on the

bit-rates which may be allocated by the base station to the
different users in its cell

J∑
j=1

xj
rj
Rj

≤ 1 (2)

We shall assume that each user gets an equal portion of
time φj = 1/N where N is the total number of users in the
cell; then we deduce from Equation (1)

rj =
Rj

N
, j ∈ {1, 2, . . . , J} (3)

Remark 1: The constraint (2) (and the particular alloca-
tion (3)) may also be obtained by multiplexing the users in
frequency or codes (or any mixture of time, frequency and
code multiplexing). The only condition is that the users are
served in a strict orthogonal way. Moreover, the bit-rates rj
should be understood as an average over a sufficiently long
run of the multiplexing.

We now introduce the dynamics of call arrivals and depar-
tures. The inter-arrival times at location j are assumed to be
exponentially distributed random variables with parameter λj
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(average inter-arrival duration equals 1/λj). The users arriving
to location j require to transmit some volumes of data (in
bits) which are i.i.d. random variables1 of mean 1/µj . (We
consider only locations j where user arrive with some data
to transmit.) We assume that the inter-arrivals are independent
from each other and so are the required volumes. We assume
also independence between the inter-arrivals and the required
volumes. We call ρj := λj/µj the traffic demand at location
j and ρ =

∑J
j=1 ρj the total traffic demand in the cell. We

denote λ =
∑J

j=1 λj the total arrival rate.

A. No mobility case

We assume in the present section that the users don’t
move during their calls. The following proposition gives the
performance in the long run of the calls arrivals and departures.
Denote the set of locations by D := {1, 2, . . . , J}. In order to
position our problem in the queueing theory context, we may
view a cell as a queue and a location as a class. In doing so,
a cell may be considered as a multi-class processor sharing
queue.

Proposition 1: The cell is stable when the traffic demand
doesn’t exceed a critical value; that is

ρ < ρc (4)

where
ρc :=

ρ∑J
j=1 ρjR

−1
j

(5)

In case of stability, the steady state the distribution of the
configuration of the users is

π (x) =

(
1− ρ

ρc

)
xD!
∏
j∈D

(ρj/Rj)
xj

xj !
, x ∈ ND (6)

where x = (xj)j∈D is a vector counting the numbers of users
in each location and xD :=

∑
j∈D xj . Moreover, the mean

number of users, the delay and the throughput per user at a
given location j ∈ {1, 2, . . . , J} are respectively given by

N̄j =
ρj(

1− ρ
ρc

)
Rj

, T̄j =
1(

1− ρ
ρc

)
Rjµj

, r̄j =

(
1− ρ

ρc

)
Rj

(7)
and the mean number of users, the delay and the throughput
per user in the cell at the steady state are respectively given
by

N̄ =
ρ

ρc − ρ
, T̄ =

ρ

(ρc − ρ)λ
, r̄ = ρc − ρ (8)

Proof: See the appendix for a detailed proof in the Marko-
vian case; i.e., when the transmitted volumes are assumed
exponentially distributed. In the more general case (when the
transmitted volumes are arbitrary distributed) the proof is more
involved. For the stability condition (4) and the expression (6)
of the steady state distribution see [14], [15, Proposition 3.1].

The mean number of users, the delay and the throughput
expressions may be obtained from [11] or by specializing [13,
Example 10] to the current discrete context with no mobility.
Note that the expression of the throughput per user in the

1not necessarily exponentially distributed

cell; i.e. r̄ = ρc − ρ comes exclusively (up to our knowledge)
from [13, Example 10].

We give here an outline of the proof of Equations (7)
and (8). The mean number of users (either in a given location
or in the cell) is obtained from the expression (6) of the steady
state distribution. The delays are then deduced from Little’s
formula [19]

T̄j =
N̄j

λj
, T̄ =

N̄

λ

The throughput per user at a given location j is simply the
average volume 1/µj divided by the delay T̄j . It remains to
show the expression of the throughput per user in the cell; i.e.
r̄ = ρc−ρ. To do so, observe that the throughput of the whole
cell at the steady state is equal to the traffic demand ρ; since
at equilibrium the volumes of data incoming to and leaving
the cell in the long run should be equal. The throughput per
user in the cell is defined as the ratio of the cell throughput ρ
by the average number of users; that is r̄ = ρ

N̄
= ρc − ρ.

Note that (6) may be written as follows

π (x) = [(1− ρ′) ρ′xD ]

xD! J∏
j=1

(
ρ′j/ρ

′)xj

xj !

 , x ∈ NJ

where ρ′j = ρj/Rj and ρ′ = ρ/ρc. If follows that the distribu-
tion of the total number of users in the cell XD :=

∑J
j=1Xj is

the geometric distribution on N with parameter 1−ρ′ = 1− ρ
ρc

;
that is Pr (XD = n) = (1− ρ′) ρ′n, n ∈ N. In particular the
probability that the cell is not empty equals ρ′ = ρ

ρc
(called

load of the cell).
Moreover the above expression shows that, given the total

number of users n, the distribution of the number of users
among the different locations is multinomial of size (n, J)
and parameters (ρ′1/ρ

′, . . . , ρ′J/ρ
′); this is equivalent to say

that the users are assigned to classes independently to each
other, with the probability ρ′j/ρ

′ of a given user to be assigned
to class j.

Corollary 1: With the notations of Proposition 1, if ρ < ρc
then

r̄ =
ρ∑J

j=1 ρj r̄
−1
j

and

T̄ =
1

λ

J∑
j=1

λj T̄j

where λ =
∑J

j=1 λj is the total arrival rate to the cell.
Proof: Straightforward calculations from (7) and (8).

The above Corollary shows that the throughput per user
in the cell is the harmonic mean of the throughputs at the
different locations pondered by the traffic demands; whereas
the delay per user in the cell is the arithmetic mean of the
delays at the different locations pondered by the arrival rates.
So we should be carefully when calculating the average of the
quality of service over a cell.
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1) Mobile categories: A user located at a given geographic
location undergoes some radio conditions; i.e., some specific
propagation losses (due to distance, shadowing and indoor)
with the different base stations in the network. Given these
radio conditions, the user gets some bit-rate. The relation
between the radio conditions and the bit-rate (which will be
presented in more details in Section III-A) may be specific to
each mobile category. We shall use the term class to designate
not only the geographic location but also the specific mobile’s
category.

Let K be the number of mobile categories and I be the
number of geographic locations, then a class j is a pair (i, k)
where i ∈ {1, 2, . . . , I} is a geographic location and k ∈
{1, 2, . . . ,K} is the mobile category. The number of classes
is now J = I × K. With this extended notion of class, the
results of Proposition 1 obviously apply; we get in particular
the expression of the throughput and delay for each class j =
(i, k). The following proposition gives the expressions of the
throughput and delay per mobile’s category but averaged over
the geographic locations.

Proposition 2: Assume the stability condition 4. For a given
mobile’s category k ∈ {1, 2, . . . ,K}, the throughput per user
in the cell at the steady state is

r̄k =

∑I
i=1 ρi,k∑I

i=1 ρi,kr̄
−1
i,k

that is the harmonic mean of the throughputs at the different
geographic locations pondered by the corresponding traffic
demands. The delay per user in the cell at the steady state
is

T̄k =

∑I
i=1 λi,kT̄i,k∑I

i=1 λi,k

that is the arithmetic mean of the delays at the different
geographic locations pondered by the corresponding arrival
rates.

Proof: The result is obtained by specializing [13, Exam-
ple 10] to the current discrete context with no mobility.

2) Dimensioning: We shall assume in the present section
that the traffic geographic distribution

pj =
ρj
ρ
, j ∈ {1, 2, . . . , J}

is fixed whereas the total traffic demand in the cell ρ may
vary. For example, in the uniform case pj = 1/J for all j ∈
{1, 2, . . . , J}. In this case, Equation (5) reads

ρc :=

 J∑
j=1

pjR
−1
j

−1

which shows that ρc is independent of the cell traffic demand
ρ. Then the stability condition (4) says that the traffic demand
ρ should not exceed the so-called critical traffic ρc which is
the harmonic mean of the peak bit-rates pondered by the traffic
distribution (p1, p2, . . . , pJ).

Fixing a target value r̄ of the throughput per user in the
cell, we deduce from (8)

ρc − ρ = r̄

called the dimensioning constraint. Indeed, the dimensioning
consists of calculating the number of base stations per unit
surface (or equivalently the cell radius) as function of traffic
demand per surface unit. Since ρ and ρc are function of the
cell radius, the dimensioning may be carried by solving the
above equation with respect to the cell radius.

Remark 2: The above formulation of the dimensioning
problem assumes that the cells have the same radius as in
the case of the regular Hexagonal model. The irregularity of
the network will be taken into account in future work.

We assume, without loss of generality, that the peak bit-
rates are sorted in the decreasing order; that is R1 > R2 >
. . . > RJ . Fixing a target value r̄J of the throughput per user
in the cell border, we deduce from (7)

ρ

ρc
= 1− r̄J

RJ

which may be taken as the dimensioning constraint.
Given some q ∈ [0, 1], let jq be the q-quantile of the traffic

distribution (p1, p2, . . . , pJ); i.e. such that

jq−1∑
j=1

pj < q ≤
jq∑
j=1

pj

Then fixing a target value r̄jq of the throughput per user at
location jq, we deduce from (7)

ρ

ρc
= 1−

r̄jq
Rjq

which may be taken also as the dimensioning constraint.
Remark 3: Note that jq is not the q-quantile of the propor-

tion of users at the steady state
(
N̄1/N̄, N̄2/N̄, . . . , N̄J/N̄

)
since from (7)

N̄j

N̄
=
ρc
ρ

ρj
Rj

= pj
ρc
Rj

Thus we should not say that a proportion q of the users at the
steady state would have a throughput larger than r̄jq ; but we
should say that a proportion q of the cell surface (pondered by
the traffic demand) would have a throughput larger than r̄jq .

B. Infinite mobility

The objective is to study the effect of mobility on perfor-
mance from the queueing theory point of view. The case when
the average user’s speed is finite and nonnull is intractable
analytically. But it may be bounded by the two extreme cases
of no mobility and infinite mobility since mobility improves
performance as proved in [16, §4.2.2]. This motivates our
study of the infinite mobility case where each user is assumed
to move along all the possible locations and thus experiences
all the radio conditions during his call (whereas in the no
mobility case, the user undergoes a given radio condition).

We assume in the present section that the mean volume of
data doesn’t depend on the location; that is µj ≡ µ. We assume
also that each user moves according to some ergodic Markov
process with invariant distribution (σ1, σ2, . . . , σJ). Moreover
we assume that each user moves so fast that he receives a peak
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bit-rate averaged over his mobility; that is
∑J

j=1 σjRj . Then
the bit-rate allocation (3) is now replaced by

rj ≡ r :=

∑J
j=1 σjRj

N
, j ∈ {1, 2, . . . , J} (9)

Proposition 3: In case of infinite mobility, the cell is stable
when

ρ < ρc

where

ρc :=
J∑

j=1

σjRj (10)

In case of stability, the mean number of users, the delay
and the throughput per user in the cell at the steady state are
respectively given by

N̄ =
ρ

ρc − ρ
, T̄ =

ρ

(ρc − ρ)λ
, r̄ = ρc − ρ

Proof: See [17, Proposition 2].
Note that ρc is the arithmetic mean of the peak bit-

rates pondered by the mobility distribution (σ1, σ2, . . . , σJ).
Assume that the traffic demand (ρ1, ρ2, . . . , ρJ) is proportional
to the mobility distribution, then, since the arithmetic mean is
larger than the harmonic mean, we deduce that the critical
traffic with mobility is larger than the critical traffic in the no
mobility case which is coherent with [16, §4.2.2].

1) Mobile categories: If there are different mobile cate-
gories, then it is natural to assume that mobility holds between
the geographic locations {1, 2, . . . , I} but not between the
mobile categories {1, 2, . . . ,K}. We assume that the mean
volume of data doesn’t depend on the geographic location but
may depend on the mobile’s category; that is

µi,k ≡ µk, i ∈ {1, 2, . . . , I} , k ∈ {1, 2, . . . ,K}

Again we assume that each user of category k ∈ {1, 2, . . . ,K}
moves so fast that he receives a peak bit-rate averaged over
his mobility; that is

Rk :=
I∑

l=1

σl,kRl,k, k ∈ {1, 2, . . . ,K} (11)

Thus the bit-rate allocation is now

ri,k ≡ rk :=

∑I
l=1 σl,kRl,k

N
, i ∈ {1, 2, . . . , I} , k ∈ {1, 2, . . . ,K}

Proposition 4: The cell is stable when

ρ < ρc :=
ρ∑K

k=1 ρkR
−1
k

where Rk are given by (11) and

ρk :=
I∑

l=1

ρl,k, k ∈ {1, 2, . . . ,K}

is the cell traffic for category k. In case of stability, the mean
number of users, the delay and the throughput per user of
category k ∈ {1, 2, . . . ,K} are respectively given by

N̄k =
ρk(

1− ρ
ρc

)
Rk

, T̄k =
1(

1− ρ
ρc

)
Rkµk

, r̄k =

(
1− ρ

ρc

)
Rk

and the mean number of users, the delay and the throughput
per user in the cell at the steady state are respectively given
by

N̄ =
ρ

ρc − ρ
, T̄ =

ρ

(ρc − ρ)λ
, r̄ = ρc − ρ

Proof: Observe that the present context is similar to that
of Proposition 1 with the categories here in the role of the
locations there and where the peak bit-rates are given now
by (11). The desired results then follow from Proposition 1.

III. PEAK BIT-RATES

We show now how to get the peak bit-rates R1, R2, . . . , RJ

in a typical LTE network. Indeed, the peak bit-rate at a given
location depends on the signal to interference and noise ratio
(SINR) at the considered location and on the relation between
the SINR and the bit-rate; i.e. the so called link performance.

A. Link performance

The capacity (in the asymptotic sense of information theory)
of a MIMO channel with a given fading state H , is given
by [20]

w log2 [det (Ir + SNRHH∗)]

where w is the channel bandwidth, t and r are the numbers
of transmitting and receiving antennas respectively, SNR is
the signal to noise power ratio per transmitting antenna, Ir
is the identity matrix of dimension r and H∗ designates the
transpose complex conjugate of H . As observed in [21, §I],
since we consider variable bit-rate traffic, we may assume that
the capacity is averaged over the fading state H which gives
the so-called ergodic capacity; that is

wE [log2 [det (Ir + SNRHH∗)]]

In the case of a channel with interference, it is usual to make
the approximation that the above formula applies by replacing
the SNR by the signal to interference and noise ratio (SINR);
see [22, Equation (3.169)]. Therefore the user’s bit-rate r is
(approximately) given by

r ≃ wE [log2 [det (Ir + SINRHH∗)]]

In order to account for the performance of practical systems,
we may consider the bit-rate r related to the SINR through
the simulations as for example those described in [3] for LTE.
Moreover, we may look for a fitting of the simulation results
with the above analytical expression; that is we may search for
the value of b such that the bit-rate r and the SINR obtained
from the simulations are approximately related by

r ≃ bwE [log2 [det (Ir + SINRHH∗)]] (12)

The parameter b in the above equation accounts for the gap of
capacity of real systems compared to the ultimate performance
given by information theory.

In summary, denoting by W the total system bandwidth, the
peak bit-rate is given by

R =Wψ (SINR)
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for some function ψ which may be obtained either from
information theory for the ultimate performance or from sim-
ulations of practical systems. The quantity R/W = ψ (SINR)
is called the spectral efficiency (expressed in bit/s/Hz). Note
that the SINR in the above formula doesn’t comprise fading
since it has been already averaged out.

B. SINR

An LTE cellular network is composed of base stations
covering some geographic zone. Each base station transmits
at some power limited to some maximal value P̃ and assigns
a specific portion w of the total system bandwidth W to each
user.

Since fading is already averaged out at the link level,
the remaining propagation loss comprises only the distance
and shadowing. Consider a given user and let Lv be his
propagation loss with base station v. We assume that each
user is served by the base station (denoted by index 0) with
the smallest loss; that is L0 = inf {Lv}. Assume moreover that
each base station transmits a constant power spectral density.

We assume in the present section that each base station
transmits at its maximal power P̃ . Then the received signal
power equals

p =
w

W

P̃

L0

and the interference equal

I =
w

W

∑
v ̸=0

P̃

Lv

Let N be the noise power in the system bandwidth, then the
SINR per transmitting antenna2 equals

SINR =
p
t

w
WN + I

t

=
1

NL0

tP̃
+ f

(13)

where
f :=

∑
v ̸=0

L0

Lv
(14)

is called the interference factor. The SINR calculated by
Equation (13) should be injected in Equation (12) to get the
corresponding bit-rate.

C. Load

We assumed in the previous section that the interfering base
stations transmit always at their maximal power P̃ . Indeed
a base station has not to transmit when there are no users
to serve. The power transmitted by base station v is then
1 {Xv (t) ̸= 0} P̃ where Xv (t) is the number of users served
by base station v at time t.

Thus the interference at time t equals

I (t) =
w

W

∑
v ̸=0

1 {Xv (t) ̸= 0} P̃

Lv

The stability condition of the network in this case is not yet
known. Nevertheless, the full activity assumption made in the

2See [22, Equation (3.169)].

previous section gives a useful lower bound of the peak bit-
rates and thus a lower bound of the critical traffic demand.
We shall make now a heuristic development which leads to an
approximation of the actual peak bit-rates and critical traffic.

Invoking the law of large numbers, we may approximate
the interference as follows

I (t) ≃ w

W

∑
v ̸=0

E [1 {Xv (t) ̸= 0}] P̃
Lv

=
w

W

∑
v ̸=0

Pr (Xv (t) ̸= 0)
P̃

Lv

=
w

W

∑
v ̸=0

ρ

ρc

P̃

Lv

where for the third equality we use the observation following
Proposition 1. Then the SINR equals now

SINR =
1

NL0

tP̃
+ ρ

ρc
f

and the corresponding peak bit-rate equals

R =Wψ

(
1

NL0

tP̃
+ ρ

ρc
f

)
Equations (5) and (10) show that the critical traffic ρc is a

function of the peak bit-rates which are them selves functions
of the critical traffic as shown in the above equation. Thus
ρc may be obtained by solving a fixed-point problem. For
example, in the case of infinite mobility Equation (10) implies

ρc = E [R] = E

[
Wψ

(
1

NL0

tP̃
+ ρ

ρc
f

)]
(15)

where expectation is with respect to a user distributed accord-
ing to the mobility invariant distribution σ. Once the above
fix-point problem is solved, the ratio

θ :=
ρ

ρc
(16)

is called the load of the system.
Remark 4: Note that the load depends on the traffic de-

mand, so we can not consider these two parameters as inde-
pendent inputs when evaluating the users QoS.

Remark 5: The above queueing analysis is carried for a
typical cell of a network composed of multiple cells assumed
statistically equivalent. Indeed, the interference between the
different cells is taken into account through the interference
factor (14) and the resolution of the fixed-point problem (15).

IV. NUMERICAL RESULTS

The 3GPP (3rd Generation Partnership Project) is a group
of industrial actors which specifies and evaluates the radio
interface of the LTE wireless cellular system. In particular, The
3GPP defines in [23, Table A.2.1.1-3] and [3, Table A.2.2-1] a
particular numerical setting for the calibration (comparison of
the results) of the simulation tools of the different contributors
to the project. We shall consider this calibration setting as the
starting point for our numerical study.
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As simulation results, we consider the results of tools which
are compliant with 3GPP approach [3] (Orange’s simulator
developed in C++ being one of them). The average (as well
confidence intervals at 20% and 80%) of the results of the
different contributors to 3GPP will be plotted and compared
to our analytical approach (implemented in Matlab).

We begin by describing the subset of the parameters in [23,
Table A.2.1.1-3], [3, Table A.2.2-1] which are used in our
analytical calculations. The frequency carrier equals 2GHz;
the distance loss model is L = 128.1 + 37.6 × log10(r) [in
dB] (where r is in km); the penetration loss equals 20dB
and the shadowing is centered and log-normally distributed
with standard deviation 8dB. The antenna pattern in the
horizontal plan is A (φ) = −min

(
12 (φ/φ3dB)

2
, Am

)
where

φ3dB = 70◦, Am = 20dB. The system bandwidth equals
W = 10MHz; the noise power is N = −95dBm and the
base station transmission power equals P = 60dBm (including
antenna gain).

A. Calibration in a static context

The objective of the present section is to calibrate the ana-
lytical formula of link performance derived from information
theory with 3GPP simulation results in a static context; i.e. the
users are permanently present in the network3. This context is
called full buffer traffic model in [3, §A.2.1.3].

We consider a MIMO system with 2 antennas at the
transmitter and 2 antennas at the receiver and proportional
fair scheduler. Figure 1 shows the spectral efficiency (defined
as the ratio of the peak bit-rate to the system bandwidth)
as function of SINR obtained from 3GPP simulations. The
fitting (12) leads to b = 0.34 and the corresponding analytical
curve is represented in Figure 1. This figure shows that the
analytical curve approximates the average tendency of the
empirical data obtained from simulations.
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Fig. 1. MIMO 2×2: Comparison of the simulation results and the analytical
expression (12)

For the following calculations, the network is modelled by
36 hexagons (6× 6) on a tore (to avoid the border effects). A

3Hence the base stations are always transmitting at their maximal power.

site with three sectorial antennas is placed at the center of each
hexagon. The inter-site distance is 500m (urban area). 3600
random user locations are generated uniformly in the network.
Each user is served by the base station giving the lowest
propagation-loss (accounting for the distance and shadowing
effects as well as the antenna pattern).

Our geometric model of the network is different from that
proposed by 3GPP [3, Table A.2.2-1] which is planer (whereas
our model is toroidal) and composed of a central hexagon
surrounded by two rings of hexagons which gives a total of
19 hexagons (whereas we have 36 = 6× 6 hexagons). We
choose the toroidal model in order to make the roles of the
different base stations (and cells) in the network completely
symmetric. Indeed, Figure 2 shows that our model and that of
3GPP are similar in terms of the resulting distribution of the
SINR which is the basis of the subsequent calculation of the
QoS perceived by the users.
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Fig. 2. Comparison of the cumulative distribution functions (CDF) of the
SINR resulting from our model and from 3GPP simulations [3, Figure A.2.2-1
(right)]

B. Validation in a dynamic context

The aim is to compare the results of queueing approach
described in Section III-C to those of 3GPP simulations in a
dynamic context; i.e. calls arrive and depart from the network
and each base station transmits only when it has at least one
user to serve. This context is called FTP traffic model in [3,
§A.2.1.3.1].

Figure 3 gives the load as function of traffic demand per
cell resulting from 3GPP simulations and from the queueing
approach. For 3GPP simulations, the load is calculated as the
fraction of time where a base station has at least one user to
serve. The average of the simulation results of the different
3GPP contributors as well the confidence intervals at 20%
and 80% are plotted. For the queueing approach, the load
is calculated by Equation (16) where the critical traffic ρc
is solution of the fixed-point problem (15). We observe in
Figure 3 that the two loads calculated by these two methods are
close, except when the queueing load is close to 1. Indeed in
this case, the system is at its limit of stability and therefore the
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time averages converge very slowly to their ergodic limits [24,
p.114]. This explains why the 3GPP simulations are too time
consuming at high loads (up to 3 weeks of calculation) and
also the gap between the simulation and queueing loads in
Figure 3. To get the curves in Figure 3, the computing time
for the 3GPP simulations is several weeks whereas it is about
1 minute for the queueing approach.
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Fig. 3. Load versus traffic demand per cell

Definition 1: The following different load situations are
considered in conjunction of the queueing approach:

• Adapted load: A base station transmits only when it has
at least one user to serve.

• Full load: Base stations are always transmitting at their
maximal power.

• Null load: Interference is assumed completely cancelled.
This corresponds to a cell in isolation.

Figure 4 gives the mean user throughput as function of
traffic demand for the different load situations described in
Definition 1 and for 3GPP simulations. In this latter case,
the mean user throughput is obtained by averaging the users
throughput over the whole simulation time.
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Fig. 4. Mean user throughput versus traffic demand per cell

One can observe that the curve obtained from 3GPP sim-
ulations and the one derived from queueing approach with
adapted load are close, except for the highest value of traffic
demand (which corresponds to a load close to 1). This gap
is due to the slow convergence rate of the 3GPP simulations
discussed above. On the other hand, as expected, the curves for
the full and adapted load converge for the highest value of the
traffic demand since this corresponds to the limit of stability of
the network (when user throughput vanishes). Going backward
with the values of traffic demand one the difference between
these two curves increases up to factor 5. Finally, the null
and adapted load curves have the same value for the smallest
traffic demand and diverge as the traffic demand increases.

Figure 5 gives the 95% quantile of user throughput as func-
tion of traffic demand for 3GPP simulations and the queueing
approach. Observe that the quantiles of 3GPP simulations are
smaller than those of queueing approach with adapted load;
nevertheless the two curves have the same tendency. This is
related to the fact that peak bit-rates of 3GPP simulations are
more dispersed than the analytical ones as shown in Figure 1.
On the other hand, the null and full load curves agree with
the adapted load one for the smallest and the highest values
of traffic demand, respectively.
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Fig. 5. 95% quantile of user throughput versus traffic demand

C. Applications

We aim now to illustrate the queueing approach on other
practical problems.

Figure 6 shows mean user throughput as function of
cell radius for traffic demand densities equal to 0.1 and
10Mbit/s/km2 and different load situations (see Definition 1).
The mean user throughput r̄ is calculated by (8) where the
critical traffic ρc is solution of the fixed-point problem (15).

As expected, for each value of the traffic demand, the curves
are in the decreasing order for respectively the null, adapted
and full load situations. Moreover, observe that the null and
adapted load curves are close to each other for the small
value of traffic demand since in this case the interference
is too small. Contrarily, for higher value of traffic demand,
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Fig. 6. Mean user throughput as function of the cell radius for different load
situations

interference is significant so that adapted load curve deviates
from the null load one. Moreover, as observed previously,
the adapted and full load curves converge for the limit of
stability of the network (when user throughput vanishes). The
computing time to get Figure 6 is of some minutes, whereas
it would require several weeks for 3GPP simulations.

Figure 7 shows mean user throughput as function of cell
radius for different traffic demand densities for adapted load
situation. As expected each curve is decreasing and ultimately
vanishes for some critical value of cell radius corresponding
to the stability limit of the network. Additionally, when the
traffic increases, the curves decrease and the critical cell radius
decreases rapidly. On the other hand, the curves for traffic
demands of 10 and 100kbit/s/km2 are close to that of null
traffic up to the cell radius of 2km which shows that noise is
preponderant against interference.
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We give now the numerical solution of the dimensioning
problem in terms of the cell radius which is more appealing
than the number of base stations per unit surface (note,

however, that the latter is inversely proportional to the square
of the former). Figure 8 shows cell radius versus traffic
demand density for two target arithmetic means of the user
throughput equal to 1 and 10Mbit/s for the three load situations
described in Definition 1. For the smaller user throughput,
the three curves are close to each other whereas for the
larger throughput they differ significantly from each other. The
adapted load curve lies between the null and full load ones;
and meets each of them for low and high traffic, respectively.
This is due to the fact that when traffic increases, the network
evolves from noise-limited to interference-limited regime.
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Figure 9 shows cell radius versus traffic demand density
for different target values of the arithmetic mean of the user
throughput. As expected, the cell radius is decreasing with the
traffic demand and with the user throughput. Note that, for the
three largest user throughputs, the curve comprises a stationary
part corresponding to a coverage constraint and a decreasing
part corresponding to a capacity constraint.
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Figures 8 and 9 are obtained in few minutes by the analytical
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approach, whereas they would require several months for
3GPP simulations.

V. CONCLUSION

We develop an approach for the dimensioning of wireless
cellular networks serving variable bit-rate calls using results
from queueing theory. In doing so, we account for the depen-
dence of the interference on the traffic demand.

The proposed approach comprises three steps. Firstly, the
link performance formula given by information theory is
calibrated with 3GPP simulation results. Secondly, the QoS
perceived by the users, in the long run of their arrivals and
departures, given by queueing theory is compared to that cal-
culated by 3GPP simulations. The good match between these
two types of results validates the proposed approach. This
approach permits to reduce the computing time from weeks
for 3GPP simulations to minutes. Finally, the dimensioning
problem is solved and the situations where the dependence
of the interference on the traffic demand has to be taken into
account are identified. Therefore, the proposed approach uses
the 3GPP link simulation results and goes beyond by solving
rapidly QoS evaluation and dimensioning problems.

The dimensioning for streaming traffic as well as mixing
such traffic with variable bit-rate calls are important axes for
future work.

APPENDIX
PROOF OF PROPOSITION 1 IN THE MARKOVIAN CASE

Assume that the transmitted volumes are exponentially
distributed. In this particular case, the process {X (t) ; t ≥ 0}
describing the number of users of the different classes is a
continuous-time Markov process with discrete state space ND

and admits the following generator{
q (x, x+ εj) = λj , x ∈ ND

q (x, x− εj) = µjRj
xj

xD
, x ∈ ND, xj > 0

(17)

where εj designates the vector of ND having coordinate 1 at
position j and 0 elsewhere and xD :=

∑
j∈D xj designates

the total number of users in the queue. It is easy to see
that the process {X (t) ; t ≥ 0} is regular [25, p.337] and
irreducible [25, p.357] and that it admits as invariant measure

α (x) = xD!
∏
j∈D

(
ρ′j
)xj

xj !
, x ∈ ND (18)

where ρ′j := λj/ (µjRj) = ρj/Rj . If ρ′ :=
∑J

j=1 ρ
′
j < 1 then∑

x∈ND α (x) = 1
1−ρ′ , indeed

1

1− ρ′
=

∞∑
n=0

ρ′n

=
∞∑

n=0

∑
j∈D

ρ′j

n

=
∞∑

n=0

∑
x∈ND:xD=n

n!
∏
j∈D

ρ
′xj

j

xj !

=
∑
x∈ND

xD!
∏
j∈D

(
ρ′j
)xj

xj !
=
∑
x∈ND

α (x)

We deduce that if ρ′ < 1 then the process {X (t) ; t ≥ 0}
admits π = (1− ρ)α as invariant distribution; and hence
this process is t-positive recurrent [25, p.357]. We deduce
from (18) that the invariant distribution is

π (x) = (1− ρ′)xD!
∏
j∈D

(
ρ′j
)xj

xj !
, x ∈ ND

Let X = (X1, X2, . . . , XJ) be the vector counting the
number of users of each class at the steady state, and let
XD :=

∑
j∈DXj be the total number of users in the queue.

The vector X has π as distribution, then, for n ∈ N,

P (XD = n) =
∑

x∈ND:xD=n

π (x)

= (1− ρ′)
∑

x∈ND:xD=n

n!
∏
j∈D

(
ρ′j
)xj

xj !

= (1− ρ′) ρ′n

which is the geometric distribution on N with parameter 1−
ρ′ = 1− ρ/ρc where ρc is given by (5). The mean number of
users is

N̄ := E [XD] =
ρ′

1− ρ′
=

ρ

ρc − ρ

From Little’s formula [19] the expected delay, denoted T̄ ,
equals

T̄ =
E [XD]

λ
=

ρ

(ρc − ρ)λ

At the steady state the queue throughput equals the traffic
demand ρ. The throughput per user is defined as the ratio of
the above queue throughput by the average number of users;
that is

r̄ =
ρ

E [XD]
= ρc − ρ

For a given class j ∈ D,

N̄j := E [Xj ]

=
∑
x

xjπ (x)

=
∑

x:xj ̸=0

(1− ρ′)xD!xj
∏
i∈D

(ρ′i)
xi

xi!

=
∑
x′

(1− ρ′) (x′D + 1)x′D!
∏
i∈D

(ρ′i)
xi

x′i!

=
∑
x′

(x′D + 1)π (x′)

= ρ′jE [XD + 1] =
ρj(

1− ρ
ρc

)
Rj

where for the fourth equality we introduce the vector x′ related
to x as follows

x′i =

{
xi i ̸= j
xi − 1 i = j

From Little’s formula the expected delay, denoted T̄j , equals

T̄j =
E [Xj ]

λj
=

1(
1− ρ

ρc

)
Rjµj
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The expected throughput of class j, denoted r̄j , is the average
required volume µ−1

j divided by the expected delay, that is

r̄j =
µ−1
j

T̄j
=

(
1− ρ

ρc

)
Rj
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K. I. Pedersen, T. E. Kolding, K. Hugl, and M. Kuusela, “LTE Capacity
Compared to the Shannon Bound,” in Proc. of VTC Spring, 2007, pp.
1234–1238.

[11] T. Bonald and A. Proutière, “Wireless downlink data channels: user
performance and cell dimensioning,” in Proc. of Mobicom, Sep. 2003.

[12] N. Hegde and E. Altman, “Capacity of multiservice WCDMA Networks
with variable GoS,” in Proc. of IEEE WCNC, 2003.

[13] M. K. Karray, “Analytic evaluation of wireless cellular networks per-
formance by a spatial markov process accounting for their geometry,
dynamics and control schemes,” Ph.D. dissertation, Ecole Nationale
Supérieure des Télécommunications, 2007.
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