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Abstract—Since a long time wireless networks have been
offering two types of services: variable bit-rate such as mail and
constant bit-rate such as voice. Recently they also offer service
for streaming calls such as mobile television. The objective of
the present paper is to study the problem of allocating (and
sharing) the resources for this new type of calls and to compare
the performance of different allocation strategies.

The allocation strategy implemented in real networks is an
iterative time-sharing strategy. We build an explicit formulation
of this strategy which permits not only a faster implementation,
but also an analytical evaluation of its performance. Moreover
we describe an optimal allocation strategy consisting of assigning
the resources in priority to the least consuming ones.

A cornerstone to evaluate and compare the different allocation
strategies is the so-called outage probability defined for each
location as the probability that a user in this location doesn’t
get his required bit-rate. We compare the efficiency of different
numerical methods to calculate it; and show that the inverse
Laplace method is rapid and efficient. We also calculate the
increase of the outage probability of the time-sharing strategy
compared to the optimal one. Finally, we validate a method
permitting to calculate analytically the average of the outage
probabilities over the different locations.

Index Terms—Resource allocation, Streaming, Wireless cellu-
lar networks, Performance, Analytical

I. INTRODUCTION

The wireless cellular networks offer different kinds of
services which may be classified into two main categories.
Variable bit-rate (VBR) connections (such as mail, ftp) aim to
transmit some given volume of data at a bit-rate which may be
decided by the network. Constant bit-rate (CBR) calls (such as
voice, video conferences) require a constant bit-rate for some
duration.

Recently, wireless cellular networks began offering stream-
ing services to their users; e.g. mobile television and streaming
video. The present paper focuses on sharing the available
resources among the streaming users; or equivalently, the
allocation of the bit-rates to users.

The objective is to evaluate and compare the performance of
different resource allocation strategies for these new streaming
services.

A. Related work
The resources (power and frequency bandwidth) in wireless

cellular networks are limited. Sharing those resources between
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the users has already been extensively studied for CBR and
VBR services.

In order to guarantee the requested bit-rates for CBR calls, a
new user is admitted only if he doesn’t break out the resource
constraint; otherwise, the arriving call is blocked (i.e. definitely
lost). The authors of [1], [2], [3] propose efficient admission
conditions. The performance of the admission conditions is
evaluated in terms of the blocking probability. A particular
effort has been made to build conditions whose blocking
probability may be evaluated analytically [4], [5], [6].

VBR connections are systematically admitted (no blocking)
and they transmit at a bit-rate which may be decided/modified
by the network which shares the resources fairly. The coun-
terpart is that the bit-rate of each user decreases when their
number increases. Thus the delay may increases drastically
when the traffic demand increases. This increase may be eval-
uated analytically by using the multi-class processor sharing
model [7], [6]. The particular case of a HSDPA (High Speed
Downlink Packet Access) network is studied in several papers
such as [8], [9] and [10].

The new streaming services [11] have characteristics mixing
the properties of the two previous services. Streaming calls are
always admitted as VBR; but they require a fixed bit-rate as
CBR [12], [13]. The counterpart of admitting systematically
all streaming calls, is that some of them may be temporarily
interrupted. The choice of which calls should be interrupted
is called allocation strategy. To our knowledge the evaluation
and comparison of different allocation strategies for streaming
calls in wireless cellular networks has not already been studied.

B. Paper organization

The paper is organized as follows. We describe the model
for streaming call in wireless cellular networks and formu-
late the resource sharing problem in Section II. A practical
allocation strategy as well as a theoretically optimal one are
described in Section III. We present three calculating methods
for the performance of these allocation strategies in Section IV.
Finally, we present our numerical results in Section V.

II. MODEL DESCRIPTION

We assume there are J possible users locations indexed by
j ∈ {1, 2, ....., J}. For each location j, let Rj be the peak
bit-rate (that is the bit-rate given to a user at this location if



he is alone in the cell), rj be the target bit-rate and Xj be
the number of users at the considered location. The collection
of the number of users is denoted by X = {Xj}j=1,....,J .
Moreover, let

ϕj =
rj
Rj

which is called the requested resource at location j. We may
assume without loss of generality that the requested resources
are sorted in the increasing order; that is ϕ1 ≤ ϕ2 ≤ . . . ≤ ϕJ .

Since the resources are limited, only some users may be
served. More specifically, we assume a resource constraint in
the following form: for each cell

J∑
j=1

Xjϕj ≤ 1 (1)

If the above constraint is not satisfied, then only a subset of
the users can get bit-rates equal to their target values; such
users are then said to be satisfied. The selection of these users
is called allocation strategy.

The satisfaction at location j, denoted by Yj , equals 1 if
the users at location j are satisfied; and 0 otherwise. The
satisfactions {Yj}j=1,....,J are random variables since they
depend on the users numbers {Xj}j=1,....,J which are them
selves random. We denote by Fj the event {Yj = 1}; that is

Fj = {Yj = 1}

and call it j-satisfaction set. Its complementary, denoted by
F ′j , is called j-outage set.

We shall assume that the number of users in the different
locations X1, X2, . . . , XJ are independent Poisson random
variables with respective means ρ1, ρ2, . . . , ρJ (which repre-
sent the traffic demands expressed in Erlang). We define the
satisfaction probability at location j by

Psat (j) = P (Yj = 1) = P (Fj)

and the outage probability by

Pout (j) = P (Yj = 0) = P
(
F ′j
)

Within this context, we shall address two problems:

1) What is the allocation strategy currently implemented in
real networks and is it optimal?

2) How to calculate the outage probabilities?

III. ALLOCATION STRATEGIES

We now present different allocation strategies for streaming
calls.

A. Optimal strategy

The optimal strategy consists of allocating the resources
in priority to the less consuming users; that is the users are
selected in the increasing order of their resource consumptions
ϕ1, ϕ2, . . . until the limit given by the constraint (1). In
other terms, given the number of users configuration X =
{Xj}j=1,....,J , let J (X) be defined by

J(X)∑
k=1

xkϕk ≤ 1, and
J(X)+1∑
k=1

xkϕk > 1

Then the users located at j ≤ J (X) are served and those
located at j > J (X) are interrupted. We deduce that the j-
satisfaction set of this strategy is

Fj =

{
j∑

k=1

Xkϕk ≤ 1

}
Remark 1: Note that FJ ⊂ FJ−1 ⊂ · · · ⊂ F1, then Psat (j)

is decreasing with j and Pout (j) is increasing with j. In
particular, Pout (j) ≤ Pout (J); that is

Pout (j) ≤ P

(
J∑
k=1

Xkϕk > 1

)
(2)

Remark 2: Sorting the resource requests. If the resource
requests ϕ1, ϕ2, . . . are not sorted in the increasing order,
then it is not immediate to define the outage probability
at each location. Indeed, we need first to sort the resource
requests; that is find a permutation σ of {1, 2, . . . , J} such
that ϕσ(1) ≤ ϕσ(2) ≤ . . . ≤ ϕσ(J). Then, we may define the
outage probability at location σ (j) by

Pout (σ (j)) = P

σ(j)∑
k=1

Xσ(k)ϕσ(k) > 1


Practically, we may introduce the sorted resource requests
ϕ̃j = ϕσ(j) and the corresponding traffic demands ρ̃j =

ρσ(j); then calculate the associated P̃out (j) which is pre-
cisely Pout (σ (j)). Note moreover that if one needs only the
maximal outage probability, i.e. Pout (σ (J)), then there is no
need to sort the resource requests since

∑σ(J)
k=1 Xσ(k)ϕσ(k) =∑J

k=1Xkϕk.

B. Time-sharing strategy

This allocation strategy is based on sharing time between
the users iteratively as it is the case in current HSDPA
(High Speed Downlink Packet Access) and LTE (Long Term
Evolution) networks.

1) Iterative description: In order to describe it, we consider
an iteration index n = 1, 2, . . . and we denote by bj(n) the
bit-rate and by Yj(n) the satisfaction at the nth iteration at
location j. Since a user is satisfied if he gets a bit-rate larger
than his target value, we deduce that

Yj(n) = 1 {bj(n) ≥ rj}
The bit-rates {bj(n)} are calculated recursively as follows.

At the first iteration, we share time equally between all the
users. Then each user gets 1/

∑J
j=1X fraction of the time.

Thus users at location j get the bit-rate

bj(1) = Rj/

J∑
j=1

X

If all the users are satisfied, then we stop the calculation.
Otherwise, we assign to each satisfied user located at j a bit-
rate bj(2) = rj and a corresponding time portion

rj
Rj

= ϕj , if Yj(1) = 1

The remaining time, 1 −
∑
i:Yi(1)=1Xiϕi (where the two

points ‘:’ mean ‘such that’), is shared among the unsatisfied
users. Thus the bit rate of an unsatisfied user j equals

bj(2) =
Rj∑

i:Yi(1)=0Xi

1−
∑

i:Yi(1)=1

Xiϕi

 , if Yj(1) = 0



More generally, at iteration n, the bit rates are given by

bj(n) =

 rj if Yj(n− 1) = 1
Rj

(
1−
∑

i:Yi(n−1)=1Xiϕi

)
∑

i:Yi(n−1)=0Xi
otherwise

We stop when the satisfactions are not changed from one
iteration to the following; i.e.

Yj(n) = Yj(n− 1), ∀j ∈ {1, 2, 3, ....., J}

2) Explicit formulation: We now build an explicit descrip-
tion of the ultimate (iteration) result of the time sharing
strategy.

Proposition 1: The (ultimate) j-satisfaction set of the time-
sharing strategy is

Fj =

{(
j−1∑
k=1

Xkϕk

)
+ (Xj + ....+XJ)ϕj ≤ 1

}
Proof: It is enough to prove that the ultimate satisfactions

{Yj}j=1,....,J given by the time sharing strategy satisfy

Yj = 1⇔

(
j−1∑
k=1

Xkϕk

)
+ (Xj + ....+XJ)ϕj ≤ 1 (3)

Since
{
ϕj}j=1...J are sorted in the increasing order, there

exists a localization j0 ∈ {1, 2, ....., J} so that

Y1 = Y2 = Y3 = Yj0−1 = 1 and Yj0 = Yj0+1 = .... = YJ = 0

• We begin by proving the direction ‘⇐’ in Equation (3).
Since Yj0 = 0, then

Rj0
Xj0 + ....+XJ

(
1−

j0−1∑
k=1

Xkϕk

)
< rj0

which implies
j0−1∑
k=1

Xkϕk + (Xj0+....+XJ)ϕj0 > 1 (4)

Now, for any l ≥ j0, we have ϕl − ϕj0 ≥ 0, thus we
deduce that(

l−1∑
k=1

Xkϕk + (Xl + ...+XJ)ϕl

)
−(

j0−1∑
k=1

Xkϕk + (Xj0 + ....+XJ)ϕj0

)
≥ 0

Thus, we have(
l−1∑
k=1

Xkϕk + (Xl + ...+XJ)ϕl

)

≥

(
j0−1∑
k=1

Xkϕk + (Xj0 + ....+XJ)ϕj0

)
Combining the above inequality and (4), we get(

l−1∑
k=1

Xkϕk + (Xl + ...+XJ)ϕl

)
> 1

This achieves the proof of the direction ‘⇐’ in Equa-
tion (3) (using the fact that A ⇒ B is equivalent to
not (B)⇒ not (A)).

• We now prove the direction ‘⇒’ in Equation (3). Consider
some j ≤ j0. Since the locations 1, 2, . . . , j − 1 are
satisfied, thus

j−1∑
k=1

Xkϕk ≤ 1

Consider the portion of time left free by users located at
1, 2, . . . , j − 1; that is

1−
j−1∑
k=1

Xkϕk

Divide the above portion of time equally between the
users at locations j, j + 1, . . . , J . The users at location j
get the bit rate

Rj
Xj + ...+XJ

(
1−

j−1∑
k=1

Xkϕk

)
Since Yj = 1, the above bit-rate should be larger than rj ,
that is

Rj
Xj + ...+XJ

(
1−

j−1∑
k=1

Xkϕk

)
≥ rj

A simple algebraic manipulation shows that the above
inequality implies the right hand side of (3), which
finishes the proof of the proposition.

Proposition 2: In the same conditions as the previous
proposition, the ultimate bit-rates assigned by the time-sharing
strategy are

bj =

 rj if Yj = 1
Rj

(
1−
∑

k:Yk=1Xkϕk

)
∑

k:Yk=0Xk
otherwise

Proof: If Yj = 1, the bit rate is evidently the target value
rj . Consider now a location j such that Yj = 0. Consider the
portion of time left free by satisfied users; that is

1−
∑

k:Yk=1

Xkϕk

Divide the above portion of time equally between the unsat-
isfied users. Then users at location j get the bit rate

Rj∑
k:Yk=0Xk

(
1−

∑
k:Yk=1

Xkϕk

)
which finishes the proof.

C. Other allocation strategies

An alternative service policy to those described above
consists of serving the users in the decreasing order of their
resource requests ϕJ , ϕJ−1, . . .. The j-satisfaction set of this
allocation strategy is

Fj =

x :

J∑
k=j

xkϕk ≤ 1


Clearly, the upper bound (2) holds again true for this strategy
and also for the time-sharing strategy. In fact, this bound holds
true for a large class of service policies. For this reason, we
will focus on its calculation in the numerical section.



IV. CALCULATION METHODS

We will now describe the methods permitting to calculate
the outage probability or equivalently the satisfaction probabil-
ity. We will consider the optimal strategy, but the results may
easily be extended to the other allocation strategies described
in Section III.

A. Monte Carlo simulations

The usual Monte Carlo method consists of generating N
independent realizations X(1), X(2), . . . , X(N) of the random
vector X and estimate the outage probability as follows

P̂out (j) =
1

N

N∑
n=1

1
{
X(n) ∈ F ′j

}
(5)

where 1 {·} designates the indicator function. The classical
concept of confidence intervals permits to calculate the error
of the above estimate as function of N . This will be detailed
in the numerical section and used to determine the number N
of experiments that guarantee a given accuracy.

B. Laplace transform inversion

Note that
Psat (j) = P (X ∈ Fj)

= P

(
j∑

k=1

Xkϕk ≤ 1

)
= FSj (1)

where FSj
is the cumulative distribution function (CDF) of

the random variable Sj =
∑j
k=1Xkϕk. There is no explicit

expression of FSj
, but fortunately, we will show that its

Laplace transform has a closed form. Then we will calculate
FSj

by inverting numerically its Laplace transform.
Lemma 1: Let S be a random variable with values in

R+ admitting a probability density function (PDF). Then the
Laplace transform of the CDF FS (s) = P (S ≤ s) is related
to that of S by the following relation

LFS
(θ) =

1

θ
E
[
e−θS

]
, θ > 0

Proof: Let fS be the PDF of the random variable S. For
θ > 0, we have

LFS
(θ) =

∫ ∞
0

e−θsFS (s) ds

=

∫ ∞
0

e−θs
(∫ s

0

fS (y) dy

)
ds

=

∫ ∞
0

e−θs
(∫ ∞

0

fS (y) 1{y≤s}dy

)
ds

=

∫ ∞
0

fS (y)

(∫ ∞
0

e−θs1{y≤s}ds

)
dy

=

∫ ∞
0

fS (y)
e−θy

θ
dy =

1

θ
E
[
e−θS

]
where the inversion of the integrals in the forth equality is due
to Fubini theorem [14, p.148] and the fact that∫ ∞

0

∫ ∞
0

∣∣e−θsfS (y) 1{y≤s}
∣∣ dyds

=

∫ ∞
0

∫ ∞
0

e−θsfS (y) 1{y≤s}dyds

=
1

θ
E
[
e−θS

]
≤ 1

θ
<∞

Lemma 2: Let X1, X2, . . . , Xj be independent Poisson
random variables with respective means ρ1, ρ2, . . . , ρj ; and
ϕ1, ϕ2, . . . , ϕj be given positive constants. The Laplace trans-
form of the random variable Sj =

∑j
k=1Xkϕk is given by

E
[
e−θSj

]
= exp

[
j∑

k=1

ρk
(
e−θϕk − 1

)]
, θ > 0 (6)

Proof: See [15, Proposition 1.2.2].
Using the above two lemmas, we deduce that the Laplace

transform of the CDF of Sj is given by

LFSj
(θ) =

1

θ
exp

[
j∑

k=1

ρk
(
e−θϕk − 1

)]
Then Psat (j) = FSj (1) may be retrieved by inverting the
above Laplace transform by using Hoog et al. [16] algorithm
implemented by Hollenbeck [17] in Matlab.

C. Gaussian approximation
We approximate the CDF of Sj with that of a Gaussian

random variable with mean m = E [Sj ] and variance σ2 =
Var [Sj ]. This leads to the following approximation of the
satisfaction probability

Psat (j) = P (Sj ≤ 1) ' Φ

(
1−m
σ

)
where Φ is the Gaussian cumulative distribution function
Φ(z) = 1/

√
2π
∫ z
−∞ e−t

2/2dt =
[
1 + erf

(
z/
√

2
)]
/2. The

expressions of the expectation and variance of Sj are given in
the following lemma.

Lemma 3: Let X1, X2, . . . , Xj be independent Poisson
random variables with respective means ρ1, ρ2, . . . , ρj ; and
ϕ1, ϕ2, . . . , ϕj be given positive constants. The moments of
the random variable Sj =

∑j
k=1Xkϕk are given by

E [Sj ] =

j∑
k=1

ρkϕk, Var [Sj ] =

j∑
k=1

ρkϕ
2
k

Proof: Differentiating (6) with respect to θ, we get,

E
[
−Sje−θSj

]
= −

(
j∑

k=1

ρkϕke
−θϕk

)
exp

[
j∑

k=1

ρk
(
e−θϕk − 1

)]
which at θ = 0 gives the desired result for E [Sj ]. Differenti-
ating the above relation again with respect to θ at θ = 0, we
get

E
[
S2
j

]
=

j∑
k=1

ρkϕ
2
k +

(
j∑

k=1

ρkϕk

)2

=

j∑
k=1

ρkϕ
2
k + E [Sj ]

2

from which we deduce the desired expression for Var [Sj ].

D. Averaging over the locations
We now show how to average the outage probabilities over

the different locations.
1) Pondering by the users number: The average outage

probability pondered by the users number is given by

P̃out = E

[∑J
j=1Xj1

{
X ∈ F ′j

}∑J
j=1Xj

]
(7)

This average can only be calculated by Monte Carlo simula-
tions.



2) Pondering by the traffic: We assume that the set of out-
age probabilities {Pout(j)}j=1...J has already been computed
using one of the three methods described above. The average
outage probability pondered by the traffic is given by

P̄out =

∑J
j=1 ρjPout(j)∑J

j=1 ρj
(8)

V. NUMERICAL RESULTS

Our numerical calculations are made on data measured in
a real network.

A. Model specification

The main inputs for our model are the number of locations
and the peak bit-rates at each of these locations. We get these
inputs from measurements in a real HSDPA network in inner
Paris as we explain now. The available bandwidth is 10MHz.

We firstly measure the signal to interference and noise ratio
(SINR) at a large number of locations covering sufficiently
the inner Paris. The distribution of the SINR is then deduced
from these measurements and sampled into 30 values, say

(SINRj , pj) , j ∈ {1, 2, ....., 30} (9)

where pj designates the probability of the sample SINRj

(of course
∑30
j=1 pj = 1). We assume that the collection

{SINRj}j=1...30 is representative of the values of SINR in
a typical cell of the considered network. Thus the number of
locations in our model is precisely J = 30.

Each location j ∈ {1, 2, ....., J} has a specific SINRj and
we calculate the corresponding peak bit-rate Rj from a table
which is beforehand generated by link simulations.

In order to account for the distribution in (9), the traffic
demand per cell ρ is distributed over the different locations as
follows

ρj = ρ× pj

We shall consider different values of the traffic demand per
cell ρ = 1, 2, . . . , 15Erlang. The users require a bit-rate of
256Kbits/s. The simulations are made with a Java tool.

B. Monte Carlo accuracy

The accuracy of the Monte Carlo estimate given by Equa-
tion (5) may be deduced from the concept of confidence inter-
vals which we recall here briefly. If we make N experiments,
then with probability, say α = 0.99, the estimation error does
not exceed

ε =
2.58√
N
σ (10)

where σ is the standard deviation of the random variable
1
{
X ∈ F ′j

}
. (The above numerical value comes from the

fact for a standard normal random variable N we have
P (|N | ≤ 2.58) = 0.99.) Unfortunately σ is itself unknown
since it is related to the outage probability by σ2 =
Pout (j) [1− Pout (j)]. Using the bound σ2 ≤ 1

4 , we deduce
from (10) that

ε ≤ 2.58

2
√
N

We fix ε = 10−3 and calculate the number of experiments
from the above equation N = 1.7× 106.

C. Results

1) Accuracy of the outage probability estimates: We aim
to evaluate the precision of the Laplace inversion and the
Gaussian approximation compared to the Monte Carlo method
(which is taken as a reference).

Figure 1 represents the maximum outage probability; i.e.
Pout (J), calculated by each of these methods as function of
the traffic demand per cell. We observe a good fit between
the Laplace inversion and Monte Carlo, whereas the Gaussian
approximation presents a visible gap. To confirm this obser-
vation, we plot in Figure 2 the estimation error defined as
the difference of the reference outage probability (calculated
by Monte Carlo) minus each of the two estimates. In order
to improve the visibility we magnify the errors by factors
of 1000 and 10 respectively for the Laplace inversion and
the Gaussian approximation. We observe that the error of the
Gaussian approximation is about 10−1 whereas the error of the
Laplace inversion is about 10−3. Recall that the estimation
error of Monte Carlo is ε = 10−3 which equals the error
observed for Laplace inversion. We deduce that the precision
of Laplace inversion method is at least the same as that of
Monte Carlo simulations (and perhaps better but this is not in
the scope of the present work).
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Fig. 1. Maximum outage probability calculated by the different methods.

Note that we have not specified the allocation strategy used
in Figure 1 since the maximum outage probability Pout (J) is
the same for both the optimal and the time-sharing strategy.

We consider now the optimal strategy and plot the corre-
sponding average outage probability P̄out pondered by traffic
(see Equation (8)) in Figure 3. We observe that the accuracy
of the Gaussian approximation is improved; but this is due to
averaging the errors over the different locations and may not
be considered as a proof of Gaussian approximation accuracy.
A similar result is obtained for the time-sharing allocation
strategy.

The computing times to generate the curves in Figure 3 are
2s, 8s and 4h respectively for the Gaussian approximation,
the Laplace inversion and the Monte Carlo method. Note the
important gain of computing time of the Laplace inversion
compared to Monte Carlo (reduction by a factor of about
1000). On the other hand, note that the Laplace inversion
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Fig. 3. Accuracy for the average outage probability estimates.

computing time is only about 4 times larger than that of the
Gaussian approximation.

2) Comparison of the allocation strategies: We compare
the average outage probabilities P̄out of the optimal and
the time-sharing strategies in Figure 4. We observe that
the optimal strategy gives a significantly less outage (better
performance) than the time-sharing one.

3) Comparison of the averaging methods: In Figure 5 we
compare the average outage probability pondered by traffic,
that is P̄out, and by the number of users, that is P̃out for
the time-sharing strategy. We observe that P̄out underestimates
P̃out but the gap remains reasonably small; not exceeding 4×
10−2. (We obtain a similar result for the optimal strategy.)

Our calculations are based on inputs from a real HSDPA
network. We made also calculations on a LTE network with
regular hexagonal architecture and theoretical inputs (SINR
from usual propagation models, then peak bit-rates from
information theory). We don’t present these results in the
paper since they are similar to those presented above for real
network’s inputs and the conclusions remain the same.
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VI. CONCLUSION

We build an explicit formulation of the iterative time-
sharing allocation strategy implemented in real networks. This
formulation permits not only a faster implementation, but also
an analytical evaluation of its performance. Moreover we
describe an optimal allocation strategy consisting of allocation
the resources in priority to the least consuming ones.

The outage probability is a key parameter permitting to
evaluate and compare the performance of the different allo-
cations strategies. We compare the efficiency of three numer-
ical methods to calculate it: Gaussian approximation, inverse
Laplace transform and Mote Carlo simulations. Our numerical
experiments show that the Gaussian approximation may be
used for a first rough estimation of the outage probability (error
of about 10−1); but its is recommended to use the inverse
Laplace method if one seeks a significantly better precision
(error not exceeding 10−3) with a moderate computing time
(reduction by a factor of about 1000 compared to Monte
Carlo).

On the other hand, the comparison of the different allocation
strategies shows that the optimal strategy gives a significantly
better performance (less outage) than the time-sharing one.



Finally, in order to get a completely analytical method
for calculating the average outage probability, we have to
consider the average pondered by the traffic. This brings a gap
compared to the average pondered by the number of users, but
this gap remains moderate (less than 4× 10−2).

An interesting continuation of the present work is to con-
sider the dynamics of call arrivals and departures and attempt
to calculate the number and durations of the calls interruptions.

REFERENCES

[1] J. Zander, “Distributed co-channel interference control in cellular radio
systems,” IEEE Trans. Veh. Technol., vol. 41, 1992.

[2] R. Yates, “A framework for uplink power control in cellular radio
systems,” IEEE J. Select. Areas Commun., vol. 13, no. 7, Sep. 1995.

[3] A. Sampath, P. S. Kumar, and J. Holtzmann, “Power control and resource
management for a multimedia CDMA wireless system,” in Proc. of IEEE
PIMRC, vol. 1, Sep. 1995.

[4] F. Baccelli, B. Błaszczyszyn, and F. Tournois, “Downlink admis-
sion/congestion control and maximal load in CDMA networks,” in Proc.
of IEEE Infocom, 2003.

[5] S.-E. Elayoubi, O. Ben Haddada, and B. Fourestié, “Performance
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