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Introduction

▶ We present some results from empirical processes theory
which are useful for data science.

▶ These results, together with the Vapnik-Chervonenkis theory
(previous lecture) will permit to
▶ establish a uniform bound of the deviation of the empirical loss

LS(n)(h) from the true loss LQ(h) for h within an infinite
hypothesis class H.

▶ We shall
▶ show the measurability of the supremum such as

suph∈H |LS(n)(h)− LQ(h)| (cf. first lecture),
▶ give upper bounds for P (suph∈H |LS(n)(h)− LQ(h)| > ε).

▶ This lecture relies on [1].
▶ More details, and in particular references and detailed proofs

may be found there.

▶ We are particularly grateful to the authors [5], [6], and [4],
who are our first source of inspiration for the present work.
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Empirical processes : Motivation

▶ Consider a general learning framework as in Lecture I.
▶ Remind that the empirical loss is defined as

Ls(n)(h) =
1

n

n∑
i=1

ℓ (h, si)

is the expectation of the ℓ (h, ·)’s with respect to the empirical
distribution (which puts a probability mass 1/n at each si) ;

▶ whereas the true loss

LQ(h) = E [ℓ (h, Z)] , where Z
dist.∼ Q.

is the expectation of ℓ (h, Z) with respect to the true

distribution Z
dist.∼ Q.

▶ Controlling the supremum suph∈H |LS(n)(h)− LQ(h)| falls in
the scope of empirical processes theory.
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Empirical processes : Notation

Machine learning Empirical processes
Data space (Z,FZ) (D,D)

Learning samples S1, S2, . . . X1, X2, . . .

Hypothesis h f = ℓ (h, ·)
Data distribution Q P

Empirical loss LS(n)(h) =
∑n

i=1 ℓ(h,Si)
n Pnf =

∑n
i=1 f(Xi)

n

True loss LQ(h) =
∫
ℓ (h, ·) dQ Pf =

∫
fdP
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Empirical processes

▶ Definition : Empirical measure and process. Let P be a
probability measure on some measurable space (D,D), let
X1, X2, . . . be i.i.d D-valued random variables with common
probability distribution P , and let n ∈ N∗.
▶ The nth empirical measure associated to P , denoted Pn, is

defined by

Pn =
1

n

n∑
i=1

δXi
,

where δx is the Dirac measure at x.
▶ Given a collection F of measurable functions D → R, the nth

empirical process is the real-valued stochastic process Gn

indexed by F defined by

Gnf =
√
n (Pn − P ) f, f ∈ F , (1)

where we use the notation µf =
∫
f (x)µ (dx) =

∫
fdµ for

Lebesgue integral.
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Empirical processes : Law of large numbers and
central limit theorem

▶ Lemma : Let P be a probability measure on some measurable
space (D,D), let Pn and Gn be the nth associated empirical
measure and process respectively (n ∈ N∗), and let f : D → R
be a measurable function.
▶ Law of large numbers : If Pf exists, then Pnf

a.s.→ Pf as
n → ∞.

▶ Central limit theorem : If Pf2 < ∞, then
Gnf

w→ N (0, P (f − Pf)2) as n → ∞.

▶ Reminder : We say that a sequence Xn of real-valued
random variables converges weakly to a measure µ on R, and
write Xn

w→ µ, if

E [f (Xn)] →
∫

fdµ,

for any bounded and continuous function f : R → R.
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Measurability of the supremum
▶ Definition : Pointwise separable class of functions. Let D be a

nonempty set, and F be a collection of functions D → R. We
say that F is pointwise separable if there is a countable
subcollection F0 ⊂ F such that every f ∈ F is the pointwise
limit of a sequence fm in F0 ; i.e. fm(x) → f(x) for every
x ∈ D.

▶ Lemma : In the context of the above definition, assume that
F is pointwise separable with countable dense subset F0

(w.r.t pointwise convergence). Let D(F) be the set of all
functions z : F → R with the property

z(fm) → z(f),

for every f ∈ F and every sequence fm in F0 such that
fm → f pointwise. Then for any z ∈ D(F),

sup
f∈F

z(f) = sup
f∈F0

z(f).
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Tail bounds : Measurability of the supremum of the
empirical process

▶ We aim to show the measurability of the supremum
∥Gn∥F = supf∈F |Gnf | of the empirical process

▶ Definition : Envelope function. Let D be a set, and let F be
a class of functions D → R. An envelope function of F is any
function F : D → R+ such that |f(x)| ≤ F (x), for every
x ∈ D and f ∈ F .

▶ Lemma : Assume that F is pointwise separable and let F0 be
a countable dense subset of F w.r.t pointwise convergence.
Assume moreover that F has a measurable envelope function
F satisfying PF < ∞. Then ||Gn||F is measurable, and

||Gn||F = ||Gn||F0 .

▶ We aim now to derive tail bounds of the supremum
∥Gn∥F = supf∈F |Gnf | of the empirical process.
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Tail bounds : Bracketing number

▶ Definition : Bracketing number. Let D be a given set, let M
be the class of all functions D → R, let φ : M → R̄+, let
F ⊂ M, and let ε ∈ R∗

+.
▶ Given two functions l, u : D → R, the bracket [l, u] is the set

of all functions f with l ≤ f ≤ u.
▶ An ε-bracket is a bracket [l, u] such that φ (l) < ∞,

φ (u) < ∞, and φ (u− l) < ε.
▶ The bracketing number N []

φ (ε,F) is the minimum number of
ε-brackets needed to cover F . (The lower and upper bounds of
the ε-brackets are not necessarily in F .)

▶ Example : Bracketing number w.r.t Lq-norm. Oftenly, we
shall consider a probability space (D,D, P ), and consider a
class F ⊂ Lq

R (P,D) (for some q ∈ [1,∞]), and φ as the

Lq (P )-norm. In this case, we shall denote N []
φ (ε,F) as

N []
Lq(P )(ε,F).
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Tail probability of the empirical process

▶ Theorem : Uniformly bounded class of functions. Assume
that F is pointwise separable and that any f ∈ F has range
in [0, 1]. Assume moreover that for some constants v and K,
either

sup
Q

NL2(Q)(ε,F) ≤
(
K

ε

)v

, ∀ε ∈ ]0,K[ ,

or

N []
L2(P )

(ε,F) ≤
(
K

ε

)v

, ∀ε ∈ ]0,K[ ,

Then ||Gn||F is measurable and

P (∥Gn∥F > t) ≤
(
Dt√
v

)v

e−2t2 , ∀t ∈ R∗
+,

for a constant D that depends only on K.
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Tail probability of the empirical process

▶ Theorem : Class of sets. Let C ⊂ D and assume that
F = {1C : C ∈ C} is pointwise separable. Assume moreover
that for some constants v and K, either

sup
Q

NL1(Q)(ε,F) ≤
(
K

ε

)v

, ∀ε ∈ ]0,K[ , (2)

or

N []
L1(P )

(ε,F) ≤
(
K

ε

)v

, ∀ε ∈ ]0,K[ , (3)

Then ||Gn||F is measurable and

P (∥Gn∥F > t) ≤ D

t

(
Dt2

v

)v

e−2t2 , ∀t ∈ R∗
+,

for a constant D that depends only on K.
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Tail probability of the empirical process

▶ Theorem : Class of sets (refinement). Let C ⊂ D and assume
that F = {1C : C ∈ C} is pointwise separable and satisfies
either (2) or (3) for some constants v and K. Assume
moreover that for some constants v′, w and K ′,

NL1(P )(ε,Fδ) ≤ K ′δwε−v′ , for every δ ≥ ε > 0, (4)

where Fδ = {1C : C ∈ C, |P (C)− 1/2| ≤ δ}. Then ||Gn||F is
measurable and

P (∥Gn∥F > t) ≤ Dt2v
′−2we−2t2 , ∀t > K

√
w,

for a constant D that depends only on K, K ′, w, v, and v′.

12 / 14



Tail probability of the empirical process

▶ Corollary : Empirical CDF ; tail bound. Let X1, X2, . . . be
i.i.d real-valued random variables with common cumulative
distribution function F . Let Fn(x) =

1
n

∑n
i=1 1{Xi ≤ x} be

the empirical cumulative distribution function. Then
||Fn − F ||R is measurable and

P (||Fn − F ||R > t) ≤ De−2nt2 , ∀t ∈ R∗
+,

for some universal constant D.

▶ The result in the above Corollary is due originally to [2,
Lemma 2 p.646] and has been refined by [3, Corollary 1
p.1270] who shows that D = 2.
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