Machine learning lecture III: Results from empirical processes theory

Bartłomiej Błaszczyszyn (1), Mohamed Kadhem Karray (2)

(1) INRIA; (2) Orange Labs

5 juillet 2022

Introduction

- ▶ We present some results from empirical processes theory which are useful for data science.
- ► These results, together with the Vapnik-Chervonenkis theory (previous lecture) will permit to
 - establish a uniform bound of the deviation of the empirical loss $L_{S^{(n)}}(h)$ from the true loss $\mathcal{L}_Q(h)$ for h within an infinite hypothesis class \mathcal{H} .
- We shall
 - show the measurability of the supremum such as $\sup_{h\in\mathcal{H}}|L_{S^{(n)}}(h)-\mathcal{L}_Q(h)|$ (cf. first lecture),
 - give upper bounds for $\mathbf{P}\left(\sup_{h\in\mathcal{H}}|L_{S^{(n)}}(h)-\mathcal{L}_{Q}(h)|>\varepsilon\right)$.
- This lecture relies on [1].
 - More details, and in particular references and detailed proofs may be found there.
- ▶ We are particularly grateful to the authors [5], [6], and [4], who are our first source of inspiration for the present work.

Outline

Introduction

Empirical processes

Measurability of the supremum

Tail bounds

Bibliography

Empirical processes: Motivation

- Consider a general learning framework as in Lecture I.
 - Remind that the empirical loss is defined as

$$L_{s^{(n)}}(h) = \frac{1}{n} \sum_{i=1}^{n} \ell(h, s_i)$$

is the expectation of the $\ell(h,\cdot)$'s with respect to the empirical distribution (which puts a probability mass 1/n at each s_i);

whereas the true loss

$$\mathcal{L}_{Q}(h) = \mathbf{E}\left[\ell\left(h,Z\right)\right], \quad \text{where } Z \overset{ ext{dist.}}{\sim} Q.$$

is the expectation of $\ell\left(h,Z\right)$ with respect to the true distribution $Z\overset{\mathrm{dist.}}{\sim}Q.$

▶ Controlling the supremum $\sup_{h \in \mathcal{H}} |L_{S^{(n)}}(h) - \mathcal{L}_Q(h)|$ falls in the scope of empirical processes theory.

Empirical processes: Notation

	Machine learning	Empirical processes
Data space	$(\mathcal{Z},\mathcal{F}_{\mathcal{Z}})$	(\mathbb{D},\mathcal{D})
Learning samples	S_1, S_2, \dots	X_1, X_2, \dots
Hypothesis	h	$f = \ell\left(h, \cdot\right)$
Data distribution	Q	P
Empirical loss	$L_{S^{(n)}}(h) = \frac{\sum_{i=1}^{n} \ell(h, S_i)}{n}$	$\mathbb{P}_n f = \frac{\sum_{i=1}^n f(X_i)}{n}$
True loss	$\mathcal{L}_Q(h) = \int \ell(h, \cdot) dQ$	$Pf = \int f dP$

Empirical processes

- ▶ **Definition**: Empirical measure and process. Let P be a probability measure on some measurable space $(\mathbb{D}, \mathcal{D})$, let X_1, X_2, \ldots be i.i.d \mathbb{D} -valued random variables with common probability distribution P, and let $n \in \mathbb{N}^*$.
 - ▶ The n^{th} empirical measure associated to P, denoted \mathbb{P}_n , is defined by

$$\mathbb{P}_n = \frac{1}{n} \sum_{i=1}^n \delta_{X_i},$$

where δ_x is the Dirac measure at x.

Given a collection \mathcal{F} of measurable functions $\mathbb{D} \to \mathbb{R}$, the n^{th} empirical process is the real-valued stochastic process \mathbb{G}_n indexed by \mathcal{F} defined by

$$\mathbb{G}_n f = \sqrt{n} \left(\mathbb{P}_n - P \right) f, \quad f \in \mathcal{F}, \tag{1}$$

where we use the notation $\mu f=\int f\left(x\right)\mu\left(\mathrm{d}x\right)=\int f\mathrm{d}\mu$ for Lebesgue integral.

Empirical processes: Law of large numbers and central limit theorem

- **Lemma**: Let P be a probability measure on some measurable space $(\mathbb{D}, \mathcal{D})$, let \mathbb{P}_n and \mathbb{G}_n be the n^{th} associated empirical measure and process respectively $(n \in \mathbb{N}^*)$, and let $f : \mathbb{D} \to \mathbb{R}$ be a measurable function.
 - Law of large numbers : If Pf exists, then $\mathbb{P}_n f \overset{\text{a.s.}}{\to} Pf$ as $n \to \infty$.
 - ► Central limit theorem : If $Pf^2 < \infty$, then $\mathbb{G}_n f \stackrel{\text{w}}{\to} \mathcal{N}(0, P(f Pf)^2)$ as $n \to \infty$.
- ▶ Reminder : We say that a sequence X_n of real-valued random variables converges weakly to a measure μ on \mathbb{R} , and write $X_n \stackrel{\mathrm{w}}{\to} \mu$, if

$$\mathbf{E}\left[f\left(X_{n}\right)\right] \to \int f \mathrm{d}\mu,$$

for any bounded and continuous function $f: \mathbb{R} \to \mathbb{R}$.

Measurability of the supremum

- ▶ **Definition**: Pointwise separable class of functions. Let \mathbb{D} be a nonempty set, and \mathcal{F} be a collection of functions $\mathbb{D} \to \mathbb{R}$. We say that \mathcal{F} is pointwise separable if there is a countable subcollection $\mathcal{F}_0 \subset \mathcal{F}$ such that every $f \in \mathcal{F}$ is the pointwise limit of a sequence f_m in \mathcal{F}_0 ; i.e. $f_m(x) \to f(x)$ for every $x \in \mathbb{D}$.
- ▶ **Lemma** : In the context of the above definition, assume that \mathcal{F} is pointwise separable with countable dense subset \mathcal{F}_0 (w.r.t pointwise convergence). Let $D(\mathcal{F})$ be the set of all functions $z: \mathcal{F} \to \mathbb{R}$ with the property

$$z(f_m) \to z(f),$$

for every $f \in \mathcal{F}$ and every sequence f_m in \mathcal{F}_0 such that $f_m \to f$ pointwise. Then for any $z \in D(\mathcal{F})$,

$$\sup_{f\in\mathcal{F}}z(f)=\sup_{f\in\mathcal{F}_0}z(f).$$

Tail bounds: Measurability of the supremum of the empirical process

- We aim to show the measurability of the supremum $\|\mathbb{G}_n\|_{\mathcal{F}} = \sup_{f \in \mathcal{F}} |\mathbb{G}_n f|$ of the empirical process
- ▶ **Definition** : Envelope function. Let $\mathbb D$ be a set, and let $\mathcal F$ be a class of functions $\mathbb D \to \mathbb R$. An envelope function of $\mathcal F$ is any function $F: \mathbb D \to \mathbb R_+$ such that $|f(x)| \leq F(x)$, for every $x \in \mathbb D$ and $f \in \mathcal F$.
- ▶ **Lemma** : Assume that \mathcal{F} is pointwise separable and let \mathcal{F}_0 be a countable dense subset of \mathcal{F} w.r.t pointwise convergence. Assume moreover that \mathcal{F} has a measurable envelope function F satisfying $PF < \infty$. Then $||\mathbb{G}_n||_{\mathcal{F}}$ is measurable, and

$$||\mathbb{G}_n||_{\mathcal{F}} = ||\mathbb{G}_n||_{\mathcal{F}_0}.$$

We aim now to derive tail bounds of the supremum $\|\mathbb{G}_n\|_{\mathcal{F}} = \sup_{f \in \mathcal{F}} |\mathbb{G}_n f|$ of the empirical process.

Tail bounds: Bracketing number

- ▶ **Definition**: Bracketing number. Let \mathbb{D} be a given set, let \mathcal{M} be the class of all functions $\mathbb{D} \to \mathbb{R}$, let $\varphi : \mathcal{M} \to \bar{\mathbb{R}}_+$, let $\mathcal{F} \subset \mathcal{M}$, and let $\varepsilon \in \mathbb{R}_+^*$.
 - Given two functions $l, u : \mathbb{D} \to \mathbb{R}$, the *bracket* [l, u] is the set of all functions f with $l \le f \le u$.
 - An ε -bracket is a bracket [l,u] such that $\varphi\left(l\right)<\infty$, $\varphi\left(u\right)<\infty$, and $\varphi\left(u-l\right)<\varepsilon$.
 - The bracketing number $\mathcal{N}_{\varphi}^{[]}(\varepsilon, \mathcal{F})$ is the minimum number of ε -brackets needed to cover \mathcal{F} . (The lower and upper bounds of the ε -brackets are not necessarily in \mathcal{F} .)
- ▶ Example : Bracketing number w.r.t L^q -norm. Oftenly, we shall consider a probability space $(\mathbb{D}, \mathcal{D}, P)$, and consider a class $\mathcal{F} \subset \mathcal{L}^q_{\mathbb{R}}(P, \mathbb{D})$ (for some $q \in [1, \infty]$), and φ as the $L^q(P)$ -norm. In this case, we shall denote $\mathcal{N}^{[]}_{\varphi}(\varepsilon, \mathcal{F})$ as $\mathcal{N}^{[]}_{L^q(P)}(\varepsilon, \mathcal{F})$.

▶ **Theorem** : Uniformly bounded class of functions. Assume that \mathcal{F} is pointwise separable and that any $f \in \mathcal{F}$ has range in [0,1]. Assume moreover that for some constants v and K, either

$$\sup_{Q} \mathcal{N}_{L^{2}(Q)}(\varepsilon, \mathcal{F}) \leq \left(\frac{K}{\varepsilon}\right)^{v}, \quad \forall \varepsilon \in]0, K[,$$

or

$$\mathcal{N}_{L^{2}(P)}^{[]}(\varepsilon, \mathcal{F}) \leq \left(\frac{K}{\varepsilon}\right)^{v}, \quad \forall \varepsilon \in]0, K[,$$

Then $||\mathbb{G}_n||_{\mathcal{F}}$ is measurable and

$$\mathbf{P}\left(\|\mathbb{G}_n\|_{\mathcal{F}} > t\right) \le \left(\frac{Dt}{\sqrt{v}}\right)^v e^{-2t^2}, \quad \forall t \in \mathbb{R}_+^*,$$

for a constant D that depends only on K.

▶ Theorem : Class of sets. Let $\mathcal{C} \subset \mathcal{D}$ and assume that $\mathcal{F} = \{\mathbf{1}_C : C \in \mathcal{C}\}$ is pointwise separable. Assume moreover that for some constants v and K, either

$$\sup_{Q} \mathcal{N}_{L^{1}(Q)}(\varepsilon, \mathcal{F}) \leq \left(\frac{K}{\varepsilon}\right)^{v}, \quad \forall \varepsilon \in]0, K[,$$
 (2)

or

$$\mathcal{N}_{L^{1}(P)}^{[]}(\varepsilon, \mathcal{F}) \le \left(\frac{K}{\varepsilon}\right)^{v}, \quad \forall \varepsilon \in]0, K[,$$
 (3)

Then $||\mathbb{G}_n||_{\mathcal{F}}$ is measurable and

$$\mathbf{P}\left(\|\mathbb{G}_n\|_{\mathcal{F}} > t\right) \le \frac{D}{t} \left(\frac{Dt^2}{v}\right)^v e^{-2t^2}, \quad \forall t \in \mathbb{R}_+^*,$$

for a constant D that depends only on K.

▶ Theorem : Class of sets (refinement). Let $\mathcal{C} \subset \mathcal{D}$ and assume that $\mathcal{F} = \{\mathbf{1}_C : C \in \mathcal{C}\}$ is pointwise separable and satisfies either (2) or (3) for some constants v and K. Assume moreover that for some constants v', w and K',

$$\mathcal{N}_{L^1(P)}(\varepsilon, \mathcal{F}_{\delta}) \le K' \delta^w \varepsilon^{-v'}, \quad \text{for every } \delta \ge \varepsilon > 0,$$
 (4)

where $\mathcal{F}_{\delta}=\{\mathbf{1}_C:C\in\mathcal{C},|P(C)-1/2|\leq\delta\}$. Then $||\mathbb{G}_n||_{\mathcal{F}}$ is measurable and

$$\mathbf{P}(\|\mathbb{G}_n\|_{\mathcal{F}} > t) \le Dt^{2v'-2w}e^{-2t^2}, \quad \forall t > K\sqrt{w},$$

for a constant D that depends only on K, K', w, v, and v'.

Corollary : Empirical CDF; tail bound. Let X_1, X_2, \ldots be i.i.d real-valued random variables with common cumulative distribution function F. Let $\mathbb{F}_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}\{X_i \leq x\}$ be the empirical cumulative distribution function. Then $||\mathbb{F}_n - F||_{\mathbb{R}}$ is measurable and

$$\mathbf{P}(||\mathbb{F}_n - F||_{\mathbb{R}} > t) \le De^{-2nt^2}, \quad \forall t \in \mathbb{R}_+^*,$$

for some universal constant D.

The result in the above Corollary is due originally to [2, Lemma 2 p.646] and has been refined by [3, Corollary 1 p.1270] who shows that D=2.

Bibliography

[1] B. Błaszczyszyn and M. K. Karray.

Data science: From multivariate statistics to machine and deep learning.

[2] A. Dvoretzky, J. Kiefer, and J. Wolfowitz.

Asymptotic minimax character of the sample distribution function and of the classical multinomial estimator.

[3] P. Massart.

The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality.

[4] S. Shalev-Shwartz and S. Ben-David.

Understanding machine learning: From theory to algorithms.

[5] M. Talagrand.

Sharper bounds for Gaussian and empirical processes.

The Annals of Probability, 22(1), 1994.

[6] A. W. van der Vaart and J. A. Wellner.

Weak convergence and empirical processes with applications to statistics. Springer, 1996.